
RIG-ARGENTINE-A-048-4C141906

1547706 - R8 SDMS

ESAT Region 8 Chain of Custody Form U.S. Environmental Protection Agency Region 8 Superfund Program

Site Name: Rico Argen-	fine _ Waters _ OCT	2014 TDF: A-048
Site Manager: Steve W Send to Ica 12/19	work O	order:
Relinquished By:	. 1	
Holly J. Sprunger Print Name	12 10 14 Date	Signature
Received By: Don Goodhan Print Name	Date	Signature
Relinquished By:	12/23/14	De June
Print Name	Date	Signature
Received By:		
Print Name	Date	Signature
Relinquished By:		
Print Name	Date	Signature
Received By:		
Print Name	Date	Signature

TechLaw, Inc. Environmental Services Assistance Team 16194 W. 45th Drive, Golden, CO 80403

Task Order:

0002 - Analytical Support and Data Validation

DCN#:

EP8 - 2 - 1089

Contract:

EP-W-13-028

TDF#:

A048

Line Item:

All

TDF Status:

In Progress

Date:

12/5/2014

To:

Don Goodrich, USEPA, Region 8 Task Order Project Officer

From:

Holly Sprunger, ESAT Environmental Scientist

Through:

Mark McDaniel, Region 8 ESAT Team Manager

Subject:

Rico Argentine Waters OCT 2014

Comments:

10/08/2014 Received 3 water samples for the following analyses:

Total Recoverable Metals by ICP-OE Total Recoverable Metals by ICP-MS Dissolved Metals / Hardness by ICP-OE Dissolved Metals by ICP-MS

Thank You

U.S. Environmental Protection Agency Region 8 Technical and Management Services

Laboratory Services Program

Certificate of Analysis

Ref: 8TMS-L

MEMORANDUM

Date:

12/04/14

Subject:

Analytical Results--- Rico-Argentine Waters OCT 2014 A048 / A-048

From:

Don Goodrich; EPA Region 8 Analytical Chemistry WAM

To:

Steve Way

Superfund

1595 Wynkoop Street

Received Sample Set(s), [Work Order : Date Received]:

[C141006 : 10/08/2014]

Attached are the analytical results for the samples received from the Rico-Argentine_Waters_OCT 2014_A048 sampling event, according to TDF A-048. All analyses were performed within their method specified holding times unless otherwise noted in the following narrative.

These samples were prepared, analyzed, and verified by the Environmental Services Assistance Team Laboratory (ESAT) according to the requirements of the Technical Direction Form (TDF).

Note: The laboratory herewith transmits this deliverable to the program/project partner for determination of "final data usability" which may include data validation and data quality assessment per and in accordance with EPA QA/G-8, *Guidance on Environmental Data Verification and Data Validation*, November 2002, EPA/240/R-02/004. Laboratory data qualifiers are applied based on the *USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review*, October 2004, referred to as "NFGI".

Laboratory policy is to dispose of any remaining sample 60 days after data analysis packages are delivered to EPA. If you would like the laboratory to retain the samples for a period longer than 60 days, please contact Don Goodrich within the 60 day period at (303) 312-6687.

TDF#:

A-048

Case Narrative

C141006

Quality Assessment: Unless indicated by exception, the QA/QC associated with this sample set produced data within the TDF-specified criteria.

Holding Times:

All samples were analyzed within their method-specified technical holding

Certificate of Analysis

time(s).

1. Initial and Continuing calibration blanks (ICBs and CCBs).

Exceptions: None.

2. Preparation (PB) / Method blanks (MB)

Exceptions: None.

3. Interference Checks (ICSA / ICSAB) for ICP-MS and ICP-OE analyses only.

Exceptions: None.

4. Initial and Continuing calibration verification analyses (ICVs, SCVs and CCVs).

Exceptions: None.

5. Laboratory Control Sample (LCS) or second source analysis or SRM.

Exceptions: None.

Laboratory Fortified blank (LFB) / Blank spike (BS), same source as used for the matrix spikes.
PBS performed with analyses/methods requiring preparation or digestion prior to analysis.
Exceptions: None.

Contract Reporting Detection Limit Standard, labeled as CRA, CRDL or CRL. Exceptions: None.

- Laboratory Duplicate (DUP). "Source" identifies field sample duplicated in the laboratory. If either
 the "source" or the duplicate result is <5X the reporting limit, the %D limit of 20% does not apply.
 Exceptions: None.
- Laboratory Matrix Spike (MS) and spike duplicate (MSD). "Source" defines original field sample fortified prior to analysis. Percent recovery (%R) limits do not apply when sample concentration(s) exceed the corresponding analyte spike level by a factor of 4 or greater. Exceptions: None.
- 10. Serial Dilution sample analysis (SRD). "Source" is parent field sample diluted 1:5 in the laboratory. Performed for ICP-OE and ICP-MS metals analyses. Percent difference (%D) limits do not apply when analyte concentration(s) are below 50x the source sample's MDL (or 10x it's PQL). Exceptions: None.
- Internal standards, criteria specified for ICP-MS analyses only, monitored at the instrument. Exceptions: None.
- Any calibration using more than two-points produced a correlation coefficient equal to or greater than 0.995.

Exceptions: None.

TDF#: A-048

Acronyms and Definitions:

ESAT Environmental Services Assistance Team

J Data Estimated qualifier (also applied to all data less than PQL, greater than or equal to MDL)

MDL Method Detection Limit

PQL Practical Quantitation Limit, also known as reporting limit.

RPD Relative Percent Difference (difference divided by the mean)

%D Percent difference, serial dilution criteria unit, difference divided by the original result.

%R Percent recovery, analyzed (less sample contribution) divided by true value

Analyte NOT DETECTED at or above the Method Detection Limit (MDL)

mg/L Parts per million (millligrams per liter). Solids equivalent = mg/Kg.

ug/L Parts per billion (micrograms per liter). Solids equivalent = ug/Kg.

NR No Recovery (matrix spike) - Often seen for calcium/magnesium when their concentration exceeds the spike level by > 4x.

NFGI USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, October 2004

RE Sample Re-analysis. Usually seen on raw data and sequences for required sample dilutions due to over-range analytes.

U Analyte not detected at or above MDL qualifier

D Diluted value qualifier.

Method(s) Summary:

As defined in the Technical Direction Form (TDF), some or all of the methods listed below were used for the determination of the reported target analytes.

From EPA's Methods for the Determination of Metals in Environmental Samples, Supplement I, May 1994, dissolved, total, and/or total recoverable metals were determined by:

· Method 200.7 / 6010B using a PE Optima ICP -OE (ICP).

. Method 200.8 / 6020 using a Perkin -Elmer Elan 6000 ICP-MS.

· Method 200.2 for total recoverable metals (only) dige stion.

. Method 245.1 using a Perkin -Elmer FIMS CVAA (aqueous mercury only).

From Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1992, Method 2340B was used for the calculated hardness determination. Hardness is reported as mg (milligram) equivalent CaCO, per liter (L) determined as follows:

Calculated hardness = 2.497 * (Calcium, mg/L) + 4.118 * (Magnesium, mg/L).

From EPA's Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW -846,

- Method 3015A was used for microwave assisted total metals digestion.
- Method 7473 was used for mercury in solids.

From EPA's Determination of Inorganic Anions by Ion Chromatography, Revision 2.1, 1993, Method 300.0 was used to determine the anions.

From EPA's Methods for Chemical Analysis of Water and Wastes, March 1983:

- · Method 310.1 was followed for the alkalinity determination.
- Method 160.1 was followed for gravimetric total dissolved solids (TDS) determination.
- · Method 160.2 was used for gravimetric total suspended sol ids (TSS) determination.
- Method 415.3 was used for total organic carbon (TOC) determination using either an Apollo 9000 or Phoenix 8000
 Non-Dispersive IR (NDIR) system. Also known as dissolved organic carbon (DOC) when performed on the dissolved sample fraction.

The quality control procedures listed in the TDF request were utilized by ESAT to verify accuracy of the results and to evaluate any matrix interferences.

Certificate of Analysis

TDF#:

200.8

2340B

Vanadium

Hardness

< 30.0

688

U

A-048

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: EPA Tag No	AC2EFF L: 8-B		Date / Time Sa Matrix: Sur	ampled: 10/0 face Water	7/14 09:35	Workorder: C141006 Lab Number: C141006-02 A					
Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch		
200.7	Aluminum	< 50.0	U	ug/L	20.0	1	12/03/2014	SV	1412020		
200.7	Beryllium	< 5.00	U	ug/L	2.00	1	12/03/2014	SV	1412020		
200.7	Calcium	241000		ug/L	100	1	12/03/2014	SV	1412020		
200.7	Iron	< 250	U	ug/L	100	1	12/03/2014	SV	1412020		
200.7	Magnesium	21100		ug/L	100	1	12/03/2014	SV	1412020		
200.7	Manganese	2220		ug/L	2.00	1	12/03/2014	SV	1412020		
200.7	Potassium	2280		ug/L	250	1	12/03/2014	SV	1412020		
200.7	Sodium	9960		ug/L	250	1	12/03/2014	SV	1412020		
200.7	Zinc	197		ug/L	10.0	1	12/03/2014	SV	1412020		
200.8	Antimony	< 10.0	U	ug/L	5.00	10	12/03/2014	SV	1412021		
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	12/03/2014	SV	1412021		
200.8	Barium	99.6	J	ug/L	50.0	10	12/03/2014	SV	1412021		
200.8	Cadmium	< 2.00	U	ug/L	1.00	10	12/03/2014	SV	1412021		
200.8	Chromium	< 20.0	U	ug/L	10.0	10	12/03/2014	SV	1412021		
200.8	Cobalt	1.18	J	ug/L	1.00	10	12/03/2014	SV	1412021		
200.8	Copper	< 10.0	U	ug/L	5.00	10	12/03/2014	SV	1412021		
200.8	Lead	< 2.00	U	ug/L	1.00	10	12/03/2014	SV	1412021		
200.8	Molybdenum	< 10.0	U	ug/L	10.0	10	12/03/2014	SV	1412021		
200.8	Nickel	< 10.0	U	ug/L	5.00	10	12/03/2014	SV	1412021		
200.8	Selenium	< 20.0	U	ug/L	10.0	10	12/03/2014	SV	1412021		
200.8	Silver	< 10.0	U	ug/L	5.00	10	12/03/2014	SV	1412021		
200.8	Thallium	< 10.0	U	ug/L	5.00	10	12/03/2014	SV	1412021		

1412021

1412020

10

1

20.0

2

ug/L

mg/L

12/03/2014 SV

12/03/2014 SV

TDF#: A-048

Metals (Dissolved) by EPA 200/7000 Series Methods

Station ID: EPA Tag No.:	FDB 8-B		Date / Time Sa Matrix: Sur	ampled: 10/0 face Water	7/14 09:30	0 Workorder: C141006 Lab Number: C141006-04 A						
Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch			
200.7	Aluminum	58.4		ug/L	20.0	1	12/03/2014	SV	1412020			
200.7	Beryllium	< 5.00	U	ug/L	2.00	1	12/03/2014	SV	1412020			
200.7	Calcium	232000		ug/L	100	1	12/03/2014	SV	1412020			
200.7	Iron	378		ug/L	100	1	12/03/2014	SV	1412020			
200.7	Magnesium	20300		ug/L	100	1	12/03/2014	SV	1412020			
200.7	Manganese	2340		ug/L	2.00	1	12/03/2014	SV	1412020			
200.7	Potassium	2080		ug/L	250	1	12/03/2014	SV	1412020			
200.7	Sodium	10000		ug/L	250	1	12/03/2014	SV	1412020			
200.7	Zinc	4680		ug/L	10.0	1	12/03/2014	SV	1412020			
200.8	Antimony	< 10.0	U	ug/L	5.00	10	12/03/2014	SV	1412021			
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	12/03/2014	SV	1412021			
200.8	Barium	< 100	U	ug/L	50.0	10	12/03/2014	SV	1412021			
200.8	Cadmium	22.5		ug/L	1.00	10	12/03/2014	SV	1412021			
200.8	Chromium	< 20.0	U	ug/L	10.0	10	12/03/2014	SV	1412021			
200.8	Cobalt	3.74		ug/L	1.00	10	12/03/2014	SV	1412021			
200.8	Copper	7.94	J	ug/L	5.00	10	12/03/2014	SV	1412021			
200.8	Lead	< 2.00	U	ug/L	1.00	10	12/03/2014	SV	1412021			
200.8	Molybdenum	13.7		ug/L	10.0	10	12/03/2014	SV	1412021			
200.8	Nickel	< 10.0	U	ug/L	5.00	10	12/03/2014	SV	1412021			
200.8	Selenium	< 20.0	U	ug/L	10.0	10	12/03/2014	SV	1412021			
200.8	Silver	< 10.0	U	ug/L	5.00	10	12/03/2014	SV	1412021			
200.8	Thallium	< 10.0	U	ug/L	5.00	10	12/03/2014	SV	1412021			
200.8	Vanadium	< 30.0	U	ug/L	20.0	10	12/03/2014	SV	1412021			
2340B	Hardness	662		mg/L	2	1	12/03/2014	SV	1412020			

TDF#:

Station ID:

EPA Tag No .:

A-048

Metals (Dissolved) by EPA 200/7000 Series Methods

RDEFF

8-B

Date / Time Sampled: Surface Water Matrix:

10/07/14 09:45

Workorder: C141006 Lab Number:

Certificate of Analysis

C141006-06

Dilution MDL Method Parameter Analyzed By Batch Results Qualifier Units Factor 200.7 Aluminum 21.7 J ug/L 20.0 1 12/03/2014 SV 1412020 200.7 Beryllium 1 12/03/2014 SV 1412020 < 5.00 U 2.00 ug/L 200.7 Calcium 239000 100 ug/L 1 12/03/2014 SV 1412020 200.7 Iron 1 12/03/2014 SV 1412020 IJ < 250ug/L 100 200.7 Magnesium 23800 100 ug/L 1 12/03/2014 SV 1412020 200.7 Manganese 1830 ug/L 2.00 1 12/03/2014 SV 1412020 200.7 Potassium 9320 250 ug/L 1 12/03/2014 SV 1412020 200.7 Sodium 11200 ug/L 250 1 12/03/2014 SV 1412020 200.7 Zinc 67.0 10.0 ug/L 1 12/03/2014 SV 1412020 200.8 Antimony 10 12/03/2014 SV 1412021 U < 10.0 5.00 ug/L 200.8 Arsenic 10 12/03/2014 SV 1412021 U < 20.0 ug/L 5.00 200.8 Barium 90.8 J ug/L 50.0 10 12/03/2014 1412021 SV Cadmium 200.8 12/03/2014 10 SV 1412021 < 2.00 U ug/L 1.00 200.8 Chromium 10 12/03/2014 SV 1412021 U < 20.0 10.0 ug/L J 200.8 Cobalt 1.03 ug/L 1.00 10 12/03/2014 SV 1412021 200.8 Copper 10 12/03/2014 1412021 SV U < 10.0 ug/L 5.00 200.8 Lead 10 12/03/2014 SV 1412021 U < 2.001.00 ug/L 200.8 Molybdenum 10 12/03/2014 SV 1412021 < 10.0 U ug/L 10.0 200.8 Nickel 10 12/03/2014 SV 1412021 < 10.0 U 5.00 ug/L 200.8 Selenium 10 12/03/2014 SV 1412021 < 20.0 U ug/L 10.0 200.8 Silver 10 12/03/2014 SV 1412021 < 10.0 U ug/L 5.00 200.8 Thallium 10 12/03/2014 SV 1412021 < 10.0 U ug/L 5.00 200.8 Vanadium 10 12/03/2014 SV 1412021 U < 30.0 20.0 ug/L 2340B Hardness 695 mg/L 2 12/03/2014 SV 1412020

[&]quot;J" Qualifier indicates an estimated value

TDF#:

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

200.8

Barium

Cadmium

Chromium

Cobalt

Copper

Molybdenum

Lead

Nickel

Silver

Selenium

Thallium

Vanadium

98.4

< 2.00

< 20.0

< 2.00

< 10.0

< 2.00

< 10.0

< 10.0

< 20.0

< 10.0

< 10.0

< 30.0

J

U

U

U

U

U

U

U

U

U

U

U

A-048

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: EPA Tag No	AC2EFF a.: 8-A		Date / Time Sa Matrix: Sur	Workorder: C141006 Lab Number: C141006-01 A					
Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch
200.7	Aluminum	21.2	J	ug/L	20.0	1	12/04/2014	SV	1412012
200.7	Beryllium	< 5.00	U	ug/L	2.00	1	12/04/2014	SV	1412012
200.7	Calcium	234000		ug/L	100	1	12/04/2014	SV	1412012
200.7	Iron	154	J	ug/L	100	1	12/04/2014	SV	1412012
200.7	Magnesium	20600		ug/L	100	1	12/04/2014	SV	1412012
200.7	Manganese	2210		ug/L	2.00	1	12/04/2014	SV	1412012
200.7	Potassium	2260		ug/L	250	1	12/04/2014	SV	1412012
200.7	Sodium	9750		ug/L	250	1	12/04/2014	SV	1412012
200.7	Zinc	770		ug/L	10.0	1	12/04/2014	SV	1412012
200.8	Antimony	< 10.0	U	ug/L	5.00	10	12/04/2014	SV	1412012
200.8	Arsenic	< 20.0	U	ug/L	5.00	10	12/04/2014	SV	1412012

ug/L

50.0

1.00

10.0

1.00

5.00

1.00

10.0

5.00

10.0

5.00

5.00

20.0

10

10

10

10

10

10

10

10

10

10

10

10

12/04/2014

12/04/2014

12/04/2014

12/04/2014

12/04/2014

12/04/2014

12/04/2014

12/04/2014

12/04/2014

12/04/2014

12/04/2014

12/04/2014

SV

1412012

1412012

1412012

1412012

1412012

1412012

1412012

1412012

1412012

1412012

1412012

1412012

TDF#:

A-048

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: FDB Date / Time Sampled: 10/07/14 09:30 Workorder: C141006
EPA Tag No.: 8-A Matrix: Surface Water Lab Number: C141006-03 A

Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	By	Batch
200.7	Aluminum	337		ug/L	20.0	1	12/04/2014	SV	1412012
200.7	Beryllium	< 5.00	U	ug/L	2.00	1	12/04/2014	SV	1412012
200.7	Calcium	226000		ug/L	100	1	12/04/2014	SV	1412012
200.7	Iron	4110		ug/L	100	1	12/04/2014	SV	1412012
200.7	Magnesium	19700		ug/L	100	1	12/04/2014	SV	1412012
200.7	Manganese	2320		ug/L	2.00	1	12/04/2014	SV	1412012
200.7	Potassium	2010		ug/L	250	1	12/04/2014	SV	1412012
200.7	Sodium	9700		ug/L	250	1	12/04/2014	SV	1412012
200.7	Zinc	4490		ug/L	10.0	1	12/04/2014	SV	1412012
200.8	Antimony	< 5.00	U	ug/L	2.50	5	12/04/2014	SV	1412012
200.8	Arsenic	< 10.0	U	ug/L	2.50	5	12/04/2014	SV	1412012
200.8	Barium	< 50.0	U	ug/L	25.0	5	12/04/2014	SV	1412012
200.8	Cadmium	12.3		ug/L	0.500	5	12/04/2014	SV	1412012
200.8	Chromium	< 10.0	U	ug/L	5.00	5	12/04/2014	SV	1412012
200.8	Cobalt	1.88		ug/L	0.500	5	12/04/2014	SV	1412012
200.8	Copper	28.6		ug/L	2.50	5	12/04/2014	SV	1412012
200.8	Lead	1.72		ug/L	0.500	5	12/04/2014	SV	1412012
200.8	Molybdenum	9.06		ug/L	5.00	5	12/04/2014	SV	1412012
200.8	Nickel	< 5.00	U	ug/L	2.50	5	12/04/2014	SV	1412012
200.8	Selenium	< 10.0	U	ug/L	5.00	5	12/04/2014	SV	1412012
200.8	Silver	< 5.00	U	ug/L	2.50	5	12/04/2014	SV	1412012
200.8	Thallium	5.62		ug/L	2.50	5	12/04/2014	SV	1412012
200.8	Vanadium	< 15.0	U	ug/L	10.0	5	12/04/2014	SV	1412012

Project Name: Rico-Argentine_Waters_OCT 2014_A048

TDF#:

A-048

Metals (Total Recov) by EPA 200/7000 Series Methods

Station ID: RDEFF EPA Tag No.: 8-A			Date / Time Sa Matrix: Sur	mpled: 10/0° face Water	7/14 09:45	Workorder: C141006 Lab Number: C141006-05 A				
Method	Parameter	Results	Qualifier	Units	MDL	Dilution Factor	Analyzed	Ву	Batch	
200.7	Aluminum	38.4	J	ug/L	20.0	1	12/04/2014	SV	1412012	
200.7	Beryllium	< 5.00	U	ug/L	2.00	1	12/04/2014	SV	1412012	
200.7	Calcium	234000		ug/L	100	1	12/04/2014	SV	1412012	
200.7	Iron	< 250	U	ug/L	100	1	12/04/2014	SV	1412012	
200.7	Magnesium	23400		ug/L	100	1	12/04/2014	SV	1412012	
200.7	Manganese	1810		ug/L	2.00	1	12/04/2014	SV	1412012	
200.7	Potassium	9120		ug/L	250	1	12/04/2014	SV	1412012	
200.7	Sodium	10900		ug/L	250	1	12/04/2014	SV	1412012	
200.7	Zinc	747		ug/L	10.0	1	12/04/2014	SV	1412012	
200.8	Antimony	< 5.00	U	ug/L	2.50	5	12/04/2014	SV	1412012	
200.8	Arsenic	< 10.0	U	ug/L	2.50	5	12/04/2014	SV	1412012	
200.8	Barium	46.2	J	ug/L	25.0	5	12/04/2014	SV	1412012	
200.8	Cadmium	0.773	J	ug/L	0.500	5	12/04/2014	SV	1412012	
200.8	Chromium	< 10.0	U	ug/L	5.00	5	12/04/2014	SV	1412012	
200.8	Cobalt	< 1.00	U	ug/L	0.500	5	12/04/2014	SV	1412012	
200.8	Copper	< 5.00	U	ug/L	2.50	5	12/04/2014	SV	1412012	
200.8	Lead	< 1.00	U	ug/L	0.500	5	12/04/2014	SV	1412012	
200.8	Molybdenum	< 5.00	U	ug/L	5.00	5	12/04/2014	SV	1412012	
200.8	Nickel	< 5.00	U	ug/L	2.50	5	12/04/2014	SV	1412012	
200.8	Selenium	< 10.0	U	ug/L	5.00	5	12/04/2014	SV	1412012	
200.8	Silver	< 5.00	U	ug/L	2.50	5	12/04/2014	SV	1412012	
200.8	Thallium	< 5.00	U	ug/L	2.50	5	12/04/2014	SV	1412012	
200.8	Vanadium	< 15.0	U	ug/L	10.0	5	12/04/2014	SV	1412012	

[&]quot;J" Qualifier indicates an estimated value

TDF#:

A-048

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike	Source	0455	%R	%D or	%D or
ICPMS-PE DRC-II			Olito	Level	Result	%R	Limits	RPD	RPD Limit
Batch 1412021 - No	Lab Prep Requ		Water					ICPA	MS-PE DRC-II
Method Blank (14120	21-BLK1)	Dilution Factor:	1			Ргера	red & Analyz	æd: 12/03/14	
Vanadium	< 2.00	3.00	ug/L						
Chromium	< 1.00	2.00	Ħ						
Cobalt	< 0.100	0.200	**						
Nickel	< 0.500	1.00	11						
Copper	< 0.500	1.00	•						
Arsenic	< 0.500	2.00	•						
Selenium	< 1.00	2.00	•						
Molybdenum	< 1.00	1.00	•						
Silver	< 0.500	1.00	n						
Cadmium	< 0.100	0.200							
Antimony	< 0.500	1.00	n						
Barium	< 5.00	10.0	н						
Thallium	< 0.500	1.00	11						
Lead	< 0.100	0.200	11						
Method Blank Spike	(1412021-BS1)	Dilution Factor:	1			Prepa	red & Analyz	ed: 12/03/14	
Vanadium	94.8	3.00	ug/L	100		95	85-115		
Chromium	97,5	2.00	*	100		97	85-115		
Cobalt	92,5	0.200	n	100		92	85-115		
Nickel	93.1	1.00	77	100		93	85-115		
Copper	93.8	1.00	*	100		94	85-115		
Arsenic	90.8	2.00	п	100		91	85-115		
Selenium	489	2.00	**	500		98	85-115		
Molybdenum	97.5	1.00	**	100		97	85-115		
Silver	97.5	1.00	**	100		97	85-115		
Cadmium	97.4	0.200	а	100		97	85-115		
Antimony	101	1.00	"	100		101	85-115		
Barium	96.4	10.0		100		96	85-115		
Thallium	98.4	1.00	н	100		98	85-115		
Lead	96.9	0.200	u	100		97	85-115		

Certificate of Analysis

TDF#:

A-048

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1412021 - No	Lab Prep Reqd		Vater -					ICPN	1S-PE DRC-H
Duplicate (1412021-1	OUPI)	Dilution Factor: 1	Source	: C141006-0	2	Prepa	red & Analyz	ed: 12/03/14	
Vanadium	< 20.0	30.0	ug/l_		< 20.0				20
Chromium	< 10.0	20.0	•		< 10.0				20
Cobalt	1.12	2.00	•		1.18			5	20
Nickel	< 5.00	10.0	•		< 5.00				20
Соррег	< 5.00	10.0	•		< 5.00				20
Arsenic	< 5.00	20.0	v		< 5.00				20
Selenium	< 10.0	20.0	**		< 10.0				20
Molybdenum	< 10.0	10.0			< 10.0				20
Silver	< 5.00	10.0			< 5.00				20
Cadmium	< 1.00	2.00			< 1.00				20
Antimony	< 5.00	10.0			< 5.00				20
Barium	98.0	100			99.6			2	20
Thallium	< 5.00	10.0			< 5.00				20
Lead	< 1.00	2.00	a		< 1.00				20
Matrix Spike (14120)	21-MS1)	Dilution Factor: 1	Source	Source: C141006-02			red & Analyz	ed: 12/03/14	
Vanadium	89.1	30.0	ug/L	100	< 20.0	89	70-130		
Chromium	92.5	20.0	"	100	< 10.0	92	70-130		
Cobalt	87.6	2.00		100	1.18	86	70-130		
Nickel	80.4	10.0		100	< 5.00	80	70-130		
Copper	83.8	10.0		100	< 5.00	84	70-130		
Arsenic	81.8	20.0		100	< 5.00	82	70-130		
Selenium	419	20.0		500	< 10.0	84	70-130		
Molybdenum	94.1	10.0	•	100	< 10.0	94	70-130		
Silver	81.3	10.0	•	100	< 5.00	81	70-130		
Cedmium	96.2	2.00	•	100	< 1.00	96	70-130		
Antimony	98.9	10.0		100	< 5.00	99	70-130		
Barium	194	100		100	99.6	95	70-130		
Thallium	93.6	10.0		100	< 5.00	94	70-130		
	92.5	2.00		.00	- 5.00		.0-150		

Certificate of Analysis

TDF#:

A-048

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

									
Analyte	Result	Det. Limit	Units	Spike Level	Source Result	_%R_	%R Limits	%D or RPD	%D or RPD Limit
Batch 1412025 - 141	12021	J.	Vater					ICPA	IS-PE DRC-II
Serial Dilution (14120)25-SRD1)	Dilution Factor, 5	Source	: C141006-0	2	Prepar	red & Analyz	red: 12/03/14	
Vanadium	< 100	150	ug/L		< 20.00				10
Chromium	< 50.0	100	•		< 10.00				10
Cobalt	< 5,00	10.0	•		1.18				10
Nickel	< 25.0	50.0			< 5.00				10
Copper	< 25.0	50.0	•		< 5.00				10
Arsenic	< 25.0	100	•		< 5.00				10
Selenium	< 50.0	100	•		< 10.00				10
Molybdenum	< 50.0	50.0			< 10.00				10
lilver	< 25.0	50 0	n		< 5 00				10
Cadmium	< 5.00	10.0	•		< 1.00				10
Antimony	< 25.0	50.0	7		< 5.00				10
Barium	< 250	500	0		99.6				10
Thallium	< 25.0	50.0	n		< 5.00				10
ead	< 5.00	10.0	*		< 1.00				10
CPOE - PE Optim	a								
Batch 1412020 - No	Lab Prep Reqd	į	Vater					ICPO	E - PE Optima
Method Blank (14120	20-BLK1)	Dilution Factor: 1				Prepai	red & Analyz	zed: 12/03/14	
Aluminum	< 20.0	50.0	ug/L						
Beryllium	< 2.00	5.00	•						
Calcium	< 100	250	•						
ron	< 100	250							
otassium	< 250	1000							
Aagnesium	< 100	250							
Aanganese	< 2.00	5.00	,						
Sodium	< 250	1000	"						
Line	< 10.0	20.0	*						

TDF#:

Project Name:

A-048

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1412020 - No	o Lab Prep Reqd	J	Vater					ICPOL	E - PE Optima
Method Blank Spike	(1412020-BS1)	Dilution Factor: 1				Prepa	red & Analyz	zed: 12/03/14	
Aluminum	10410	50.0	ug/L	10100		103	85-115		
Beryllium	102.7	5.00	,,	100		103	85-115		
Calcium	10290	250	"	10100		102	85-115		
ron	10330	250	ų	10100		102	85-115		
Potassium	10530	1000	11	10100		104	85-115		
Magnesium	10390	250	q	10100		103	85-115		
Manganese	102.1	5.00	n	100		102	85-115		
Sodium	10450	1000	**	10100		103	85-115		
Zinc	100.0	20.0	*	100		100	85-115		
Duplicate (1412020-1	DUPI)	Dilution Factor: 1	Source	: C141006-0	2	Prepa	red & Analyz	zed: 12/03/14	
Aluminum	21.11	50.0	ug/L		< 20.0				20
Beryllium	< 2.00	5.00			< 2.00				20
Calcium	240700	250	n		240700			0.02	20
ron	< 100	250			< 100				20
Potassium	2322	1000	**		2277			2	20
Magnesium	21300	250	"		21060			1	20
Manganese	2215	5.00			2222			0.3	20
Sodium	10160	1000	"		9961			2	20
Zinc	201.3	20.0	ø		197.0			2	20
Matrix Spike (14120	20-MS1)	Dilution Factor: 1	Source	: C141006-0	2	Prepa	red & Analyz	zed: 12/03/14	
Aluminum	10580	50.0	ug/L	10100	< 20,0	105	70-130		
Beryllium	103.3	5.00	•	100	< 2.00	103	70-130		
Calcium	243300	250	11	10100	240700	25	70-130		
Iron	10220	250	*	10100	< i00	101	70-130		
Potassium	13170	1000	11	10100	2277	108	70-130		
Magnesium	30730	250	"	10100	21060	96	70-130		
Manganese	2240	5.00	**	100	2222	18	70-130		
Sodium	20260	1000	n	10100	9961	102	70-130		
Zinc	283.2	20.0		100	197.0	86	70-130		

Certificate of Analysis

TDF#:

A-048

Metals (Dissolved) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R_	%R Limits	%D or RPD	%D or RPD Limit
Batch 1412023 - 14	112020	Water						ICPO	E - PE Optima
Serial Dilution (1412	2023-SRD1)	Dilution Factor: 5	Dilution Factor: 5 Source: C141006-02 Prepared						
Aluminum	< 100	250	ug/L		< 20.00				10
Beryllium	< 10.0	25.0	•		< 2.00				10
Calcium	231000	1250	#		240700			4	10
Iron	< 500	1250	**		< 100.00				10
Potassium	1964	5000	4		2277			15	10
Magnesium	20590	1250	•		21060			2	10
Manganese	2273	25.0	•		2222			2	10
Sodium	9636	5000			9961			3	10
Zinc	199.8	100			197.0			1	io

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level, RPD = Relative Percent Difference; %D = % Difference, DL = Detection Limit for OC sample

TDF#:

A-048

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det, Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
ICPMS-PE DRC-II		2		Level	Result	7010	121111118	KID	151 to 1,000 ft
Batch 1412012 - 206		ļ	Vater					ICP	MS-PE DRC-II
Method Blank (14120)12-BLK2)	Dilution Factor: 5				Prepai	red: 12/01/14	Analyzed: 12/	04/14
Vanadium	< 10.0	15.0	ug/L						
Chromium	< 5.00	10.0	,						
Cobalt	< 0.500	1.00							
Nickel	< 2.50	5.00	•						
Copper	< 2.50	5.00	•						
Arsenic	< 2.50	10.0	n						
Selenium	< 5.00	10.0	•						
Molybdenum	< 5.00	5.00	11						
Silver	< 2.50	5,00	"						
Cadmium	< 0.500	1.00	n						
Antimony	< 2,50	5.00							
Barium	< 25.0	50.0							
Thallium	< 2.50	5.00	u						
Lead	< 0.500	1.00	•						
Duplicate (1412012-1)	OUP2)	Dilution Factor: 1	Source	:: C141006-0	1	Prepar	red: 12/01/14	Analyzed: 12/	04/14
Vanadium	< 20.0	30.0	ug/L		< 20.0				20
Chromium	< 10.0	20.0	"		< 10.0				20
Cobalt	< 1.00	2.00			< 1.00				20
Nickel	< 5.00	10.0	0		< 5.00				20
Copper	< 5.00	10.0	9		< 5,00				20
Arsenic	< 5.00	20.0	*		< 5.00				20
Selenium	< 10.0	20.0			< i0.0				20
Molybdenum	< 10.0	10.0	n		< i0.0				20
Silver	< 5.00	10.0	n		< 5.00				20
Cadmium	. 1.048	2.00	p		< 1.00				20
Caumum		10.0	*		< 5.00				20
	< 5.00	10.0							
Antimony	< 5.00 99.72	100	•					1	20
			,,		98.35 < 5.00			ļ	

TDF#:

A-048

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1412012 - 20	0.2 - TR Metals		Water				<u> </u>	ICP	MS-PE DRC-II
Matrix Spike (14120)	12-NIS2)	Dilution Factor: 1	Source	C141006-0	1	Prepa	red: 12/01/14	Analyzed: 12/	04/14
Vanadium	273.1	30.0	ug/L	300	< 20.0	91	70-130		
Chromium	381.i	20.0	n	400	< 10.0	95	70-130		
Cobalt	188.3	2.00	n	200	< 1.00	94	70-130		
Nickel	450.1	10.0	n	500	< 5.00	90	70-130		
Copper	282.4	10.0	•	300	< 5.00	94	70-130		
Arsenic	800.9	20.0	**	800	< 5.00	100	70-130		
Selenium	1672	20.0	n	2000	< 10.0	84	70-130		
Molybdenum	405.2	0.01	"	400	< 10.0	101	70-130		
Silver	74.93	10.0	n	75.0	< 5.00	100	70-130		
Cadmium	203.8	2.00	**	200	< 1.00	102	70-130		
Antimony	826.3	10.0	n	800	< 5.00	103	70-130		
Barium	290.2	100	H	200	98.35	96	70-130		
Thallium	1890	10.0	•	2000	< 5.00	94	70-130		
Lead	955.4	2.00		1000	< 1.00	96	70-130		
Reference (1412012-S	SRM2)	Dilution Factor: 2				Prepar	red: 12/01/14	Analyzed: 12/	04/14
Vanadium	954.1	60.0	ug/L	1000		95	85-115		
Chromium	991.0	40.0	*	1000		99	85-115		
Cobalt	984.1	4.00		1000		98	85-115		
Nickel	954.3	20.0		1000		95	85-115		
Copper	989.2	20.0	"	1000		99	85-115		
Arsenic	2010	40.0	**	2000		100	85-115		
Selenium	1006	40.0	n	1000		101	85-115		
Molybdenum	973.2	20.0	n	1000		97	85-115		
Silver	248.9	20.0	*	250		100	85-115		
Cadmium	1013	4.00		1000		101	85-115		
Antimony	2054	20.0	**	2000		103	85-115		
Barium	975.2	200	**	1000		98	85-115		
Thallium	4776	20.0	**	5000		96	85-115		
Lead	1911	4.00	n	2000	•	96	85-115		

Certificate of Analysis

TDF#:

A-048

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R_	%R Limits	%D or RPD	%D or RPD Limit
Batch 1412033 - 14	12012	<u> </u>	Vater					ICPN	4S-PE DRC-I
Serial Dilution (1412	033-SRD1)	Dilution Factor: 5	Source	: C141006-0	06-01 Prepared: 12/01/14 Analyzed: 12/04/14				
Vanadium	< 100	150	ug/L		< 20.00				10
Chromium	< 50.0	100	Q		< 10.00				10
Cobalt	< 5.00	10.0	7		< 1.00				10
Vickel	< 25.0	50.0	•		< 5.00				10
Copper	< 25.0	50.0	•		< 5.00				10
Arsenic	< 25.0	100	•		< 5.00				10
Selenium	< 50.0	100			< 10.00				10
violybdenum	< 50.0	50.0	•		< 10.00				200
Silver	< 25.0	50.0	•		< 5.00				10
Cadmium	< 5.00	10.0	•		< 1.00				10
Antimony	< 25.0	50.0	•		< 5.00				10
Barium	< 250	500	•		98.35				10
Thallium	< 25.0	50.0	•		< 5.00				10
æad	< 5.00	10.0	•		< 1.00				10
CPOE - PE Optin	1a								
3atch 1412012 - 20	0.2 - TR Metals	И	Vater					ICPO	E - PE Optima
Method Blank (1412)	012-BLK1)	Dilution Factor: 1				Prepar	ed; 12/01/14	Analyzed: 12/0	04/14
Muminum	< 20.0	50.0	սջ/Լ						
Beryllium	< 2.00	5.00	"						
Calcium	< 100	250	n						
ron	< 100	250	•						
otassium	< 250	1000							
1agnesium	< 100	250	•						
1anganese	< 2.00	5.00							
lodium	< 250	1000	**						
inc	< 10.0	20.0	**						

TDF#:

Project Name:

A-048

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit	
Batch 1412012 - 20	00.2 - TR Metals		Vater .					•	E - PE Optima	
Duplicate (1412012-	DUPI)	Dilution Factor: 1	Source:	C141006-0	1	Prepai	Prepared: 12/01/14 Analyzed: 12/04/14			
Aluminum	23.32	50.0	ug/L		- 21.24			9	20	
Beryllium	< 2.00	5.00	•		< 2.00				20	
Calcium	237100	250			234000			i	20	
Iron	112.5	250	"		154.4			31	20	
Potassium	2284	1000	n		2260			1	20	
Magnesium	20810	250			20590			ı	20	
Manganese	2198	5.00	n		2214			0.7	20	
Sodium	9827	1000	*		9751			0.8	20	
Zinc	768.0	20.0	•		769.8			0.2	20	
Matrix Spike (14120	12-MS1)	Dilution Factor: 1	Source: C141006-01		Prepa	red: 12/01/14	Analyzed: 12/	04/14		
Aluminum	1925	50.0	ug/L	2000	21.24	95	70-130			
Beryllium	197.3	5.00	n	200	< 2.00	99	70-130			
Calcium	237500	250	н	1000	234000	354	70-130			
Iron	2973	250	n	3000	154.4	94	70-130			
Potassium	12600	1000	*	10000	2260	103	70-130			
Magnesium	22580	250	"	2000	20590	100	70-130			
Manganese	2379	5.00	7	200	2214	83	70-130			
Sodium	12710	1000	77	3000	9751	99	70-130			
Zinc	936.4	20.0	•	200	769.8	83	70-130			
Reference (1412012-	SRMI)	Dilution Factor: 1				Prepa	red: 12/01/14	Analyzed: 12/	04/14	
Aluminum	927.3	50.0	ug/L	1000		93	85-115			
Beryllium	996.2	5.00	•	1000		100	85-115			
Calcium	927.1	250	57	1000		93	85-115			
Iron	933.7	250	n	1000		93	85-115			
Potassium	4719	1000	n	5000		94	85-115			
Magnesium	979.3	250	•	1000		98	85-115			
Manganese	1044	5.00	•	1000		104	85-115			
Sodium	938.3	1000	•	1000		94	85-115			
Zinc	959.4	20.0		1000		96	85-115			

Certificate of Analysis

TDF#:

A-048

Metals (Total Recov) by EPA 200/7000 Series Methods - Quality Control

TechLaw, Inc. - ESAT Region 8

Analyte	Result	Det. Limit	Units	Spike Level	Source Result	%R	%R Limits	%D or RPD	%D or RPD Limit
Batch 1412031 - 1412012		ı	Water					ICPO	E - PE Optima
Serial Dilution (1412	2031-SRD1)	Dilution Factor: 5	Dilution Factor: 5 Source: C141006-01			Prepared: 12/01/14 Analyzed: 12/04/14			
Aluminum	< 100	250	ug/L		21,24				10
Beryllium	< 10.0	25.0	ŧ		< 2.00				10
Calcium	230200	1250	0		234000			2	10
Iron	< 500	1250	"		154.4				10
Potassium	2035	5000	"		2260			10	10
Magnesium	20720	1250	0		20590			0.6	10
Manganese	2282	25.0	**		2214			3	10
Sodium	9631	5000	•		9751			i	10
Zinc	795.9	100	"		769.8			3	10

NOTE:

%R = % Recovery, %R limits do not apply when sample levels exceed 4x the spike level.

RPD = Relative Percent Difference, %D = % Difference, DL = Detection Limit for OC sample

Rico-Argentine_Waters_OCT 2014_A048

Certificate of Analysis

TDF#:

A-048

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method:

200.7

Analysis Name:

ICPOE Diss. Metals

Instrument:

ICPOE - PE Optima

Work Order: Nu

C141006

Analytical Sequence:

1412023

Dissolved

Concentration Units:

սջ/Լ

Analyte	Initial Calibration Blank (1 & 2)	C	ontinuing Cal	ibration Blank	Method Blank (Batch ID	PQL		
		i	2	3	4	1412020-BLK1	NA	
	-0.37	2.06						
Aluminum		5	6	7	8	-0.76	NA	50.00
		i	2	3	4	1412020-BLK1	NA	
	0.56	0.41]
Beryllium		5	6	7		0.45	NA	5.00
		ı	2	3	4	1412020-BLK1	NA	<u> </u>
	0.23	8.25						1
Calcium		5	6	7	8	13.36	ÑΑ	250.00
		1	2	3	4	1412020-BLK1	NA	
	5.80	29.69						250.00
Iron		5	6	7	8	53.66	NA	
 .		1	2	3	4	1412020-BLK1	NΑ	
	24.12	21.84						
Potassium		.5	6	7	8	23.33	NA	1,000.00
		1	2	3	4	1412020-BLK1	NΑ	
	-0.47	1.98						Ī
Magnesium		5	. 6.	7	8	-5.58	NA	250.00
		1	2	3	4	1412020-BLK1	NA	
	0.12	0.17]
Manganese		· _5	6	.7	8	-0.09	NA	5.00
	0.73	1	2	3	4	1412020-BLK1	NA	
Sodium	0.73	6,62				10.82	NA	1,000.00
		5	. 6	7	8	-	****	1,000,00

Rico-Argentine_Waters_OCT 2014_A048

Certificate of Analysis

TDF#:

A-048

TechLaw Inc., ESAT Region 8

INORGANIC ANALYSES DATA SHEET

Intial and Continuing Calibration Blanks

Analytical Method:

200.7

Analysis Nume:

ICPOE Diss. Metals

Instrument:

ICPOE - PE Optima

Work Order: Nu

C141006

Analytical Sequence:

.

1412023 Dissolved

Concentration Units:

ug/L

Analyte	Initial Calibration Blank (1 & 2)	Method Continuing Calibration Blanks (Batch ID)						PQL
		1	2	3	4	1412020-BLK1	NA	
	1.01	-0.78						
Zinc		5	6	7	8] 0.96	NA	20.00
				<u> </u>				

Rico-Argentine_Waters_OCT 2014_A048

Certificate of Analysis

TDF#:

A-048

TechLaw Inc., ESAT Region 8

INORGANIC ANALYSES DATA SHEET

Intial and Continuing Calibration Blanks

Analytical Method:

200.8

Analysis Name:

ICPMS Diss, Metals

Instrument:

ICPMS-PE DRC-II

Work Order: Nu

C141006

Analytical Sequence:

1412025

Dissolved

Concentration Units:

ug/L

Analyte	Initial Calibration Blank (1 & 2)	c	ontinuing Cal	ibration Blank	Method Blank (Batch ID)		PQL	
•	•	1	2	3	4	1412021-BLK1	NA]
	0.14	0.05						
Vanadium		5	6	7	- 8	-0.08	NA	3.00
		1	2	3	4	1412021-BLK1	NA	
	-0.07	-0.07					***	
Chromium		5	6	7	8	-0.27	NA	2.00
		I	2	3	4	1412021-BLK1	NA	
	0.01	0.01						
Cobalt		5	6	7	8	0.00	NΛ	0.20
		1	2	3	4	1412021-BLK1	NA	<u> </u>
	0.02	0.00						Ī
Nickel			6	7	88	-0.02	NA	1.00
	<u> </u>	ı	2	3	. 4	1412021-BLK1 N	NA	
	0.02	0.01					.,,	
Copper		5	6	7	8	-0.05	NA	1.00
		1	2	3	4	1412021-BLK1	NA	
	-0.05	0.06]
Arsenic		5	6	7	8	0.04	NA	2.00
-		1	2	3	4	1412021-BLK1	NA	
	0.10	0.09						
Selenium		5	6	7	8	0.19	NA	2.00
		ı	2	3	4	141 2 021-BLK1	NA	
	0.21	0.12						–
Molybdonum		5	6	7	8	0.70	NA	1.00

Rico-Argentine_Waters_OCT 2014_A048 Certificate of Analysis

TDF#: A-048

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method:

Project Name:

200.8

Analysis Name:

ICPMS Diss. Metals

Instrument:

ICPMS-PE DRC-II

Work Order: Nu

C141006

Analytical Sequence:

1412025

Dissolved

Concentration Units:

ug/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blank	Method Blank (Batch ID)		PQL	
		t	2	3	4	1412021-BLK1	NA]
	0.04	0.04] ,,,	NΑ	1.00
Silver	 	5	6	7	8	0.03	NA	1.00
		1	2	3	4	1412021-BLK1	NA	
	0,02	0.03] ,,,	NA	0.20
Cadmium		5	. 6	7	88	0.01	NA	0.20
		1	2	3	4	1412021-BLK1	NA	
	0.14	0.22					NA	1.00
Antimony		5	6	7	8	0.13	1474	
		1	2	3	4	1412021-BLK1	NA	
	0.00	0.00]] ,,,,
Barium		5	6	7	8	-0.02	NA	10.00
		1	2	3	4	1412021-BLK1	N۸	
	0.01	0.01						l .
Thallium		5	6	7	8	-0.05	NA	1.00
	_	1	2	3	4	1412021-BLK1	NA	
	0.01	0.01					NA	0.20
Lead		5	6	7	8	0.01		

Certificate of Analysis

TDF #:

A-048

TechLaw Inc., ESAT Region 8 INORGANIC ANALYSES DATA SHEET Intial and Continuing Calibration Blanks

Analytical Method:

<u>200.7</u>

Analysis Name:

ICPOE Tot. Rec. Metals

Instrument:

ICPOE - PE Optima

Work Order: Nu

C141006

Analytical Sequence:

1410001

1412031 Total Recoverable

Concentration Units:

<u>ug/L</u>

Analyte	Initial Calibration Blank (1 & 2)		Continuing Cal	libration Blank	s	Blank	Method Blank (Batch ID)		
		1	2	3	4	1412012-BLK1	NΛ		
	2.08	4.06			•			1	
Aluminum		5	6	7	8	3.35	NA	50,00	
		1	2	3	4	1412012-BLK1	NA	 	
	0.18	0.14						1	
Beryllium		5	6	7	8	-0.09	NA	5.00	
		1	2	3	4	1412012-BLK1	NA		
	-2.52	2.34						Ī	
Calcium		5	6	7	. 8	12.14	NA	250.00	
		i	2	3	4	1412012-BLK1	NA		
	34.00	25.69						1	
lron		5	6	7	8	44.93	NA	250.00	
· · · · ·		1	2	3	4	1412012-BLK1	NA		
	23.36	19.66					NI A]	
Potassium		5	6	7	8	63.36	NA	1,000.00	
		1	2	3	4	1412012-BLK1	NA		
	0.25	1.43						I	
Magnesium		5	6	7	. 8	0.59	NΑ	250.00	
		. I	2	3	4	1412012-BLK1	NA		
	-0.13	-0.12						5.00	
Manganese		5	6	7	8	-0.43	NΑ	5.00	
	1.10	1	2	3	. 4	1412012-BLK1	NA		
Sodium	4.42	4.66				69.13	NA	1,000.00	
	 	.5	6	7	8	-		1,000.00	

Rico-Argentine_Waters_OCT 2014_A048

Certificate of Analysis

TDF#:

A-048

TechLaw Inc., ESAT Region 8

INORGANIC ANALYSES DATA SHEET

Intial and Continuing Calibration Blanks

Analytical Method:

200.7

Analysis Name:

ICPOE Tot, Rec. Metals

Instrument:

ICPOE - PE Optima

Work Order: Nu

C141006

Analytical Sequence:

1412031 Total Recoverable

Concentration Units:

ug/L

Analyte	Initial Calibration Blank (1 & 2)		Method Continuing Calibration Blanks (Batch ID)					
		l	2	3	. 4	1412012-BLK1	NA	
	-1.84	-2.62						
Zinc		5	6	7	8	-2.82	NA	20.00
				<u> </u>	<u> </u>			

Certificate of Analysis

TDF#:

A-048

TechLaw Inc., ESAT Region 8

INORGANIC ANALYSES DATA SHEET

Intial and Continuing Calibration Blanks

Analytical Method:

200.8

Analysis Name:

ICPMS Tot. Rec. Metals

Instrument:

ICPMS-PE DRC-II

Work Order: Nu

C141006

Analytical Sequence:

1412033

Total Recoverable

Concentration Units:

ug/L

Analyte	Initial Calibration Blank (1 & 2)	(Continuing Cal	ibration Blanks	;	Mo Bi (Bat	PQL	
		t	2	3	4	NΑ	1412012-BLK2	
	0.23	0.13						
Vanadium		5	6	7	s	NA	0.00	3.00
		1	2	3	4	NΑ	1412012-BLK2	
	0.13	0.25						
Chromium		5	6	7	8	NA	0.48	2.00
		1	2	3	4	NΑ	1412012-BLK2	
	0.01	0.01						0.00
Cobalt		5	6	7		NA	0.01	0.20
		1	2	3	4	NA	1412012-BLK2	
	0.02	0.02					200	i.00
Nickel		5	6	7	8	NA NA	0.00	
		1	2	3	4	NA	1412012-BLK2	
	0.00	0.04					00,	
Соррет			6	7	8	NA	-0.01	1.00
		1	2	3	4	NA_	1412012-BLK2	
	-0.05	-0.08					2.0	2.00
Arsenic		5	6	7	S	NA	-0.19	2.00
 		1	2	3	4	NA	1412012-BLK2	
	0.00	-0.02						2.00
Sclenium	n l	5	6	7	8	NΑ	-0.22	2.00
		1	2	3 .	4	NA	1412012-BLK2	
	0.23	0.18]			0.76	
Molybdenum		5	6	7	8	NΛ	0.76	1.00
								<u> </u>

Rico-Argentine_Waters_OCT 2014_A048

Certificate of Analysis

TDF#:

A-048

TechLaw Inc., ESAT Region 8

INORGANIC ANALYSES DATA SHEET

Intial and Continuing Calibration Blanks

Analytical Method:

200,8

Analysis Name:

ICPMS Tot. Rec. Metals

Instrument:

ICPMS-PE DRC-II

Work Order: Nu

C141006

Analytical Sequence:

1412033 Total Recoverable

Concentration Units:

ug/L

Analyte	Initial Calibration Blank (1 & 2)	C	Continuing Cal	ibration Blank	Me B (Bat	PQL		
		1	2	3	4	NΛ	1412012-BLK2	_
	0.02	0.02						
Silver		5	6	7	8	NA	0.02	1.00
···		1	2	3	4	NA	1412012-BLK2	
	0.01	0.01					0.01	0.00
Cadmium		5	6	7	<u> </u>	NA	0.01	0.20
		1	2	3	4	NA	1412012-BLK2	
	0.09	0.15						
Antimony		5	6	7	8	NA	-0.02	1.00
-		1	2	3	4	NA	1412012-BLK2	
	10.0	0.00						
Barium	1	5	66	7	8	NA	0.10	10.00
		1	2	3	4	NA	1412012-BLK2	
	0.01	0.11						
Thallium		5	6	7	8	NA	-0.05	1.00
	1 1	t	2	3	4	NA	1412012-BLK2	
	0.00	0.01						
Lead		_ 5	6	7	8	NA	0.00	0.20

Rico-Argentine_Waters_OCT 2014_A048 Project Name:

Certificate of Analysis

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima

Method: 200.7

Analysis Name: ICPOE Diss. Metals

Sequence: 1412023

Work Order: C141006

Units: ug/L

Sequence: 1412023	3 Work Order: C141006 Units: ug/L											
Dissolved	Initi	ial (ICV1,	ICV2)	1	Cont	inuing C	alibration	Verification	n Stand	ards (CC	:Vs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
			-		1			2			3	
				12500	12790	102.3						
Aluminum	12500	12740	101.9		4			5			6	
Avidinindin						ì						
			,		7			8			9	
								_				
		_			1		Ĺ	2			3	
	500		100.0	500	518.0	103.6					_	
Beryllium	500	511.1	102.2		4			5			6	
,												
			:		7			8			9	
				ļ								
					1			2			3	
Calcium .	12500	12580	100.6	12500	12740	101.9						
	12300	12380	100.0		4			5			G	
					7			8			9	
				<u> </u>								
					1			2			3	
	12500	12650	101.2	12500	13140	105.1						
Iron	12300	12030	101.2	ļ	4			5			6	
							ļ. <u>.</u>					_
							ļ	8			9	
				ļ	11		<u> </u>	2			3	
	12500	12810	102.5	12500	12930	103.4	ļ			,		
Magnesium	12300	12010	102.3		4		ļ	5			6	
·												
					7			8			9	
				ļ			ļ					
				1000	1	1015	 	2			3	
	1000	1036	103.6	1000	1047	104.7	ļ — —					
Manganese			.03.0	ļ	4			5			6	
					-		 					
				<u> </u>	7			8			9	
				<u> </u>	-		<u> </u>					

Rico-Argentine_Waters_OCT 2014_A048

Certificate of Analysis

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima

Method: 200.7

Analysis Name: ICPOE Diss. Metals

Sequence: 1412023

Work Order: C141006

Units: ug/L

Dissolved	Initi	al (ICV1,	ICV2)	1	Continuing Calibration Verification Standards (CCVs)										
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R			
					1			2			3				
	25000	0.000		25000	25600	102.4									
Potassium	25000	25530	102.1		4		٠	5			6				
			ı		7			8			9				
				10500	10000	102.4		2			3				
	12500	12830	102.6	12500	12800	102.4									
Sodium	12300				4		-	5			6				
					7			8			9				
					1			2			3				
	0.500			2500	2609	104.4					<u> </u>				
Zinc	2500	2578	103.1	-	4			5			6				
					7			8			9				

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II

Method: 200.8

Analysis Name: ICPMS Diss. Metals

Sequence: 1412025

5 Work Order: C141006

Units: ug/L

Sequence: 1412025		work Ur	der: C14	41006	Units: ug/L									
Dissolved	Init	ial (ICV1, I	ICV2)		Cont	inuing C	alibration Verification Sta	indards (CCVs)						
Analyte	True	Found	%R	True	Found	%R	True Found %	R True Found %R						
Antimony					1		2	3						
	50.0	49.6	99.2	50.0	49.3	98.6								
					4		5	6						
				ļ	7		8	9						
					<u> </u>									
	_				1		2	3						
	50.0	49.6	99.2	50.0	49.9	99.8								
Arsenic		49.0			4		5	6						
														
					7		8	9						
							2	3						
	50.0	48.3	96.6	50.0	49.6	99.2								
Barium	30.0	46.3	90.0	.	4			6						
					7		8	9						
							8							
				 	1	-	2	3						
			20.0	50.0	49.6	99.2								
Cadmium	50.0	49.6	99.2		4		5	6						
				<u> </u>	7		8	9						
				<u> </u>	1		2	3						
			A.O. #	50.0	51.1	102.2								
Chromium	50.0	49.3	98.6		4		5	6						
					7	-	8	9						
				 	1	_		3						
				50.0	48.1	96.2								
Cobalt	50.0	48.9	97.8		4		5	6						
-			_											
į	ı				7		8	9						
				l			<u></u>							

Certificate of Analysis

Project Name: Rico-Argentine_Waters_OCT 2014_A048

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II

Method: 200.8

Analysis Name: ICPMS Diss. Metals

Sequence: 1412025

Work Order: C141006

Units: ug/L

Sequence: 1412025	work Order: C141006 Units: ug/L										
Dissolved	lniti	ial (ICV1, I	ICV2)	1	Cont	inuing C	alibration Verification S	Stands	ards (CC	Vs)	
Analyte	True	Found	%R	True	Found	%R	True Found	%R]	True	Found	%R
					1			$\overline{}$		3	
	50.0	49.3	98.6	50.0	48.3	96.6		\rightarrow	_		
Copper				ļ	4		5	 	_	6	
	,			ļ				\rightarrow			
				ļ	7		8	\dashv		9	
				<u> </u>	<u>.</u>		_2	\dashv	_=	_ 3	
				50.0	49.8	99.6		o			
1	50.0	49.1	98.2		4		5	一十		6	
Lead											
					7		3			9	
					11		2	\dashv		3	
Molybdenum	50.0	49.3	98.6	50.0	49.8	99.6					
	30.0				4		5			6	
	l							\dashv			
					7		. 8			9	
					1		2	-		3	
				50.0	48.7	97.4	*	\dashv			
NEAL C	50.0	48.7	97.4		4		5	\dashv		6	
Nickel											
					7		8			9	
	1							T			
					1		2	\Box		_ 3	
	50.0	51.3	102.6	50.0	48.7	97.4		\rightarrow			
Selenium	20.0		102.0		4		5			6	
								_			
	i i				7	-	8	\dashv	-	9	
								-			
			100.0	50.0	50.1	100.2	2	\dashv		_ 3	
0.7	50.0	50.0		20.0	4	.00.2	5	\dashv		6	
Silver											_
					7		8			9	
								\neg			

Certificate of Analysis

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II

Method: 200.8

Analysis Name: ICPMS Diss. Metals

Sequence: 1412025

Work Order: C141006

Units: ug/L

Dissolved Analyte	Init	ial (ICVI, I	CV2)	Continuing Calibration Verification Standards (CCVs)											
	True	Found	%R	True	Found	%R_	True	Found	%R	True	Found	%R			
Thallium								2			3				
				50.0	50.2	100.4									
	50.0	49.9	99.8		4		5								
					7			8			9				
					1			2			3 _				
	50.0	47.9		50.0	48.9	97.8		· 							
Vanadium			95.8		4			5			6				
					7			8			9				
l						_	-								

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Rico-Argentine_Waters_OCT 2014_A048 **Project Name:**

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima

Method: 200.7

Analysis Name: ICPOE Tot, Rec. Metals

Sequence: 1412031

Work Order: C141006

Units: ug/L

Sequence. 1412031			uci. Ci		· · · · · · · · · · · · · · · · · · ·	mus. ug	,.					
Total Recoverable	Initi	ial (ICV1,	ICV2)	1	Cont	inuing C	alibration	Verification	on Stand	ards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
	12500	12220	102.2	12500	12730	101.8						
Aluminum	12500	12770	102.2		4			5			6	
									_			
					7			8			9	
				<u> </u>				2			3	
	500	499.7	99.9	500	506.1	101.2						
Beryllium	500				4			5			- 6	
				<u> </u>	7			8			9	
				ļ				_				
		•		12500	12640	101.1		2			3	
	12500	12800	102.4	12300	4	101.1		5			6	
Calcium		_		<u> </u>							-	
					7			8			9	
					· ·							
				-	<u></u>			2	. <u> </u>		3	
				12500	12470	99.8						
Iron	12500	12940	103.5		4			5			6	
11011						_						
					7			8			9	
					J.			2			3	
	12500	13050	102.0	12500	12840	102.7						
Magnesium	12500	12850	102.8		4			5			6	
				ļ								
					7			8		_	. 9	
			,									
							ļ				3	
	1000	1021	102.1	1000	1030	103.0						
Manganese					4	_		5			6	
							<u> </u>					
					7			8	-	_	9	
				l								

Project Name:

Rico-Argentine_Waters_OCT 2014_A048

Certificate of Analysis

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPOE - PE Optima

Method: 200.7

Analysis Name: ICPOE Tot. Rec. Metals

	Work Or	rder: C14	11006	l	Jnits: ug	/L					
Initi	al (ICV1,	ICV2)		Cont	inuing C	alibration	ı Verificatio	on Stand	ards (CC	CVs)	
True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
				1			2			3	
0.7000	0.000		25000	25270	101.1						
25000	25320	101.3		4			. 5			6	
				7			9	-		9	
				<u>'</u>			<u> </u>				
				1			2			3	
			12500	12720	101.8						
12500	12650 	101.2		4			5			6	
								-			
						<u> </u>	3			<u> </u>	
				1			2			3	
0.500	0.500		2500	2547	101.9						
2500	2502	100.1		4			5			6	
				7		<u> </u>	· · ·			9	
				- -		-					
	Initi	Initial (ICV1, True Found 25000 25320 12500 12650	Initial (ICV1, ICV2) True Found %R 25000 25320 101.3	Initial (ICV1, ICV2) True Found %R True 25000 25320 101.3 12500 12650 101.2	Initial (ICV1, ICV2) True Found %R True Found 25000 25320 101.3	Initial (ICV1, ICV2) True Found %R 25000 25320 101.3 12500 12650 101.2 True Found %R 1 25000 25270 101.1 12500 12720 101.8 7 12500 12720 101.8 7 2500 2502 100.1	Initial (ICV1, ICV2) True Found %R True Found %R True 25000 25320 101.3 7 12500 12650 101.2 1 1	True Found %R True Found %R True Found %R True Found 2 2 2 2 2 2 2 2 2	True Found %R 2	True Found %R True Found True Found True Found True True True True True True	True Found %R True True

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV ⊕ 90 - 110%R, CCV = 80 - 120%R,

Project Name:

Rico-Argentine_Waters_OCT 2014_A048

Certificate of Analysis

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II

Method: 200.8

Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1412033

Work Order: C141006

Sequence: 1412033		Work O	rder: C14	41006	τ	Jnits: ug	/L					
Total Recoverable	Init	ial (ICV1,	ICV2)	1	Continuing Calibration Verification Standards (CCVs)							
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
	· -	_			J			2			3	
	50.0	51.30	102.6	50.0	50.84	101.7						
Antimony		31.30	102.0	ļ	4			5			6	
					7						<u>9</u>	
				İ	'						 -	
					1			2			3	
İ	50.0	52.17	104.3	50.0	52.10	104.2						
Arsenic		32.17	104.5		4			5			6	
ļ				<u> </u>								
					7			8			9	
					1			2			3	·····
		50.40		50.0	50.13	100.3						
Barium	50.0	50.42	100.8		4			5			6	
					7			8			9	
											y	
			_		1			2				
				50.0	51.15	102.3		_				
Cadmium	50.0	51.87	103.7		4			5			6	
					7			8				
ĺ											9	
	_				1	_		2			3	
	60.0	40.71	00.4	50.0	52.28	104.6						
Chromium	50.0	49.71	99.4		4			5			6	
					7		-	8		_	9	
		<u>.</u>			i			2			3	
	50.0	50.50	,,,,	50.0	51.52	103.0						
Cobalı	50.0	50.50	101.0		4			5			6	
				·	7							
ļ	•							8			9	
				L								

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II

Method: 200.8

Analysis Name: ICPMS Tot. Rec. Metals

Sequence: 1412033

Work Order: C141006

Units: ug/L

Sequence, 1412033		work Or	der. Ci	41000	,	Jinis: ug	nts: ug/L					
Total Recoverable	Lnit	ial (ICV1,	ICV2)		Cont	inuing C	alibration	· Verificatio	on Stand	lards (CC	CVs)	
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
								2			3	
	50.0	50.68	101.4	50.0	52.08	104.2	ļ				·	
Copper	30.0		101.4		4			5			6	
••						_						
					7		ļ	8			9	
							ļ	2		_	3	
	50.0	50.55	101.1	50.0	52.16	104.3						
Lead				<u> </u>	4		ļ	5	_		6	
				ļ								
					7			8			9	
				ļ			<u> </u>					
				50.0	<u>1</u> 52.83	105.7		2			3	
	50.0	51.90	103.8	30.0	4	105.7		5			6	
Molybdenum							<u> </u>					
					7			8		<u> </u>	9	
					•							
				-	1	· -		. 2		<u> </u>	3	
				50.0	49.78	99.6		<u> </u>				
Nickel	50.0	50.06	100. i		4			5			6	
Nickei			-		·					_		
					7			8			9	
											-	
								2			3	
	50.0	61.26	102.5	50.0	53.79	107.6						
Selenium	50.0	51.26	102.5		4			S			6	
					7			8			9	
					11			2			3	
	50.0	51.70	103.4	50.0	51.58	103.2	ļ					
Silver		50	.05.7	ļ	4			5			6	
					_ 	_						
					7			8			9	
							l		_			

Certificate of Analysis

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8

Initial and Continuing Calibration Verification Results

ICPMS-PE DRC-II

Method: 200.8

Analysis Name: ICPMS Tot, Rec. Metals

Sequence: 1412033

Work Order: C141006

Units: ug/L

Total Recoverable	Initial (ICV1, ICV2)			Continuing Calibration Verification Standards (CCVs)								
Analyte	True	Found	%R	True	Found	%R	True	Found	%R	True	Found	%R
					1			2			3	
				50.0	52.07	104.1						
Thallium	50.0	51.11 ————	102.2	,	4			5			6	
					7		<u> </u>	8			9	
								_2			3	
	50.0	40.21	00.6	50.0	49.69	99.4						
Vanadium	50.0	49.31	98.6		4			5			6	
					7			8			9	

Metals - ICV & CCV %R Criteria = 90 - 110%, Classical Chemistry %R Criteria - ICV = 90 - 110%R, CCV = 80 - 120%R.

Project Name:

A-048

TDF#:

TechLaw, Inc. - ESAT Region 8
ICP Interference Check Sample
ICPMS-PE DRC-II

Analyte			heck Sample	Result*	<u>Units</u>	True	<u>%R</u>	<u>PQL</u>
	1412025	Analysis:	ICPMS Diss. Metals	0.1	ug/l.			
Antimony			IFA1	0.1				1.00
			IFB1	0.0	ug/L			1.00
Arsenic			IFAI	0.0	ug/L			2.00
			IFB1	18.9	ug/L	20	95	2.00
Barium			IFA1	0.1	ug/l.			10.0
			IFB1	0.0	ug/L			10.0
Cadmium			IFAI	0.1	ug/L			0.200
			IFB1	20.0	ug/L	20	100	0.200
Chromium			IFAI	0.2	ug/L			2.00
			IFB1	19.9	ug/L	20	99	2.00
Cobalt			IFAI	0.0	ug/L		·	0.200
			IFB1	18.9	ug/L	20	95	0.200
Copper			IFA I	0.6	ug/L			1.00
		•	IFB1	19.1	ug/L	20	96	1.00
Lead			IFAI	0.0	ug/L			0.200
			IFB1	0.0	ug/L	-		0.200
Molybdenun	1		IFAI	195.0	ug/l,	200	98	1.00
			IFB1	191.4	ug/L	200	96	1.00
Nickel	_		IFA1	-0.1	ug/L			1.00
	· -		IFB1	18.7	ug/L	20	94	1.00
Selenium	_		IFA1	-0.1	ug/L			2.00
			IFB1	-0.2	ug/L			2.00
Silver		·	IFA1	0.0	ug/L,		•	1.00
			IFB1	19.6	ug/i_	20	98	1.00
Thallium			IFAI	-0.1	ug/i.			1.00
			IFB1	-0.1	ug/L		_	1.00
Vanadium			IFA I	-0.3	ug/L			3.00
			IFB1	-0.4	ug/L			3.00

^{*}Criteria = \$0-120%R of True Value or +/- PQ!.

See raw data for complete analyte list and results.

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8 ICP Interference Check Sample ICPMS-PE DRC-II

Analyte Sequence: 1412	2033 Analysi	Check Sample s: ICPMS Tot. Rec. N	Result*	Units	True	<u>%R</u>	PQL
Antimony		IFA1	0.0	ug/L			1.00
		IFB1	0.0	ug/L			1.00
Arsenic		IFA1	-0.1	ug/L			2.00
		IFB1	20.3	ug/L	20	102	2.00
Barium		IFA1	0.1	ug/L			10.0
		IFB1	0.0	ug/L			10.0
Cadmium		IFA1	0.1	ug/L			0.200
		IFB1	20.6	ug/L	20	103	0.200
Chromium		IFA1	0.4	ug/L			2.00
		IFB1	20.6	ug/L	20	103	2.00
Cobalt		IFA1	0.0	ug/L			0.200
		IFB1	20.0	ug/L	20	100	0.200
Copper		IFA1	0.6	ug/L			1.00
		IFB1	19.6	ug/L	20	98	1.00
Lead		IFA1	0.0	ug/L			0.200
		IFB1	0.0	ug/L			0.200
Molybdenum		IFA1	195.9	ug/L	200	98	1.00
		IFB1	198.0	ug/L	200	99	1.00
Nickel		IFA1	-0.2	ug/L			1.00
		IFB1	19.2	ug/L	20	96	1.00
Selenium		IFA1	-0.1	ug/L			2.00
		IFB1	0.0	ug/L			2.00
Silver		IFA1	0.0	ug/L			1.00
		IFB1	19.5	ug/L	20	98	1.00
Thallium		IFA1	0.0	ug/L			1.00
		IFB1	0.0	ug/L			1.00
Vanadium		IFA1	0.1	ug/L			3.00
		IFB1	-0.2	ug/L			3.00

^{*}Criteria = 80-120%R of True Value or +/- PQL See raw data for complete analyte list and results.

Project Name:

Rico-Argentine_Waters_OCT 2014_A048

Certificate of Analysis

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8
ICP Interference Check Sample
ICPOE - PE Optima

Analyte	Check Sample	Result*	<u>Units</u>	True	<u>%R</u>	POL.
Sequence: 1412023	Analysis: ICPOE Diss. Metals					
Aluminum	IFA1	60,959.4	ug/L	60,000	102	50.0
	IFBI	60,367.6	ug/l	60,000	101	50.0
Beryllium	IFAT	-0.6	นหิ/เ			5.00
	IFB1	95.5	ug/l_	100	96	5.00
Calcium	IFAT	307,033.7	ug/L	300,000	102	250
	IFB1	303,051.0	ug/l_	300,000	101	250
Iron	IFA1	237,123.8	ug/L	250,000	95	250
	IFB1	235,541.0	ug/l_	250,000	94	250
Magnesium	IFA1	145,901.0	ug/L	150,000	97	250
·	IFB1	144,129.7	ug/L	150,000	96	250
Manganese	IFAI	-0.3	ug/L			5.00
	IFBI	197.6	ug/l_	200	99	5.00
Potassium	IFA I	-87.8	ug/L	···		1000
	IFB1	20,942.3	ug/L	20,000	105	1000
Sodium	IFA1	51,674.3	ug/L	50,000	103	1000
	IFB1	50,876.6	ug/L	50,000	102	1000
Zinc	IFA1	-2.4	ug/L			20.0
	IFB1	282.4	ug/L	300	94	20.0

^{*}Criteria = 80-120%R of True Value or +/- PQL See raw data for complete analyte list and results.

Certificate of Analysis

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8
ICP Interference Check Sample
ICPOE - PE Optima

Analyte Sequence: 1412031	Check Sample Analysis: ICPOE Tot. Rec. i	<u>Result*</u> Metals	<u>Units</u>	True	<u>%R</u>	PQL
Aluminum	IFA1	57,571.5	ug/L	60,000	96	50.0
	IFB1	58,196.1	ug/L	60,000	97	50.0
Beryllium	IFA1	-0.9	ug/L		_	5.00
	IFB1	92.5	ug/L	100	93	5.00
Calcium	IFA1	294,591.2	ug/L	300,000	98	250
	IFB1	295,559.6	ug/L	300,000	99	250
Iron	IFA1	230,658.5	ug/L	250,000	92	250
	IFB1	229,058.3	ug/l_	250,000	92	250
Magnesium	IFA1	139,007.3	ug/L	150,000	93	250
	IFB1	141,277.7	ug/L	150,000	94	250
Manganese	IFA1	-0.7	ug/L			5.00
	IFB1	192.8	ug/L	200	96	5.00
Potassium	IFAI	-87.2	ug/L			1000
	IFB1	20,161.3	ug/L	20,000	101	1000
Sodium	IFAI	48,807.5	ug/L	50,000	98	1000
	IFBI	49,569.6	ug/L	50,000	99	1000
Zinc	IFAI	1.5	ug/L			20.0
	IFB1	270.5	ug/L	300	90	20.0

^{*}Criteria = 80-120%R of True Value or ÷/- PQL See raw data for complete analyte list and results.

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-II

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1412025

Sequence: 1412025				
Analyte	True	<u>Found</u>	<u>%R</u>	<u>Units</u>
Antimony	1.00	1.05	105	ug/L
Arsenic	2.00	2.05	103	ug/L
Barium	10.0	9.23	92	ug/L
Cadmium	0.200	0.232	116	ug/L
Chromium	2.00	1.82	91	ug/L
Cobalt	0.200	0.181	91	ug/L
Copper	1.00	0.954	95	ug/L
Lead	0.200	0.190	95	ug/L
Molybdenum	1.00	1.00	100	ug/L
Nickel	1.00	0.931	93	ug/L
Selenium	2.00	1.58	79	ug/l_
Silver	1.00	0.934	93	ug/L
Thallium	1.00	0.887	89	ug/L
Vanadium	2.00	1.76	88	ug/L

Rico-Argentine_Waters_OCT 2014_A048 Project Name:

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard

ICPOE - PE Optima

Metals (Dissolved) by EPA 200/7000 Series Methods

Sequence: 1412023

Sequence. 1412025				
Analyte	<u>True</u>	<u>Found</u>	<u>%R</u>	<u>Units</u>
Aluminum	100	97.81	98	ug/L
Beryllium	5.00	5.008	100	ug/L
Calcium	250	245.3	98	ug/L
Iron	100	105.1	105	ug/L
Magnesium	1000	1014	101	ug/L
Manganese	10.0	11.00	110	ug/L
Potassium	1000	1064	106	ug/L
Sodium	1000	1052	105	ug/L
Zinc	50.0	55.14	110	ug/L

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard ICPMS-PE DRC-11

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1412033

A == 1.4 =	er		07.13	
Analyte	True	Found	<u>%R</u>	<u>Units</u>
Antimony	1.00	1.016	102	ug/L
Arsenic	2.00	1.875	94	ug/L
Barium	10.0	9.568	96	ug/L
Cadmium	0.200	0.1976	99	ug/L
Chromium	2.00	2.128	106	ug/L
Cobalt	0.200	0.2209	110	ug/l_
Copper	1.00	1.036	104	ug/L
Lead	0.200	0.1901	95	ug/l_
Molybdenum	1.00	1.063	106	ug/L
Nickel	1.00	1.064	106	ug/L
Selenium	2.00	1.776	89	սց/Լ_
Silver	1.00	0.9307	93	ug/L
Thallium	1.00	0.9757	98	ug/L
Vanadium	2.00	2.117	106	ug/L

TDF#:

A-048

TechLaw, Inc. - ESAT Region 8 Detection Limit (PQL) Standard

ICPOE - PE Optima

Metals (Total Recov) by EPA 200/7000 Series Methods

Sequence: 1412031

ordanie				
Analyte	True	<u>Found</u>	<u>%R</u>	<u>Units</u>
Aluminum	100	100.0	100	ug/L
Beryllium	5.00	4.952	99	ug/L
Calcium	250	240.8	96	ug/L
Iron	100	102.7	103	ug/L
Magnesium	1000	1024	102	ug/L
Manganese	10.0	10.47	105	ug/L
Potassium	1000	1038	104	ug/L
Sodium	1000	1038	104	ug/L
Zinc	50.0	52.85	106	ug/L

Certificate of Analysis

TDF#:

A-048

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method:

200.7

Dissolved

Sequence 1D#: 1412023

Instrument ID#: ICPOI	E - PE Optima \	Vater	LSR #: A-048
Analysis ID	Sample Name	Analysis Date	Analysis Time
1412023-ICV1	Initial Cal Check	12/03/14	11:24
1412023-SCV1	Secondary Cal Check	12/03/14	11:28
1412023-ICB1	Initial Cal Blank	12/03/14	11:31
1412023-CRL1	Instrument RL Check	12/03/14	11:34
1412023-IFA1	Interference Check A	12/03/14	11:36
1412023-IFB1	Interference Check B	12/03/14	11:40
1412020-BLK1	Blank	12/03/14	11:44
1412020-BS1	Blank Spike	12/03/14	11:47
C141006-02	AC2EFF	12/03/14	11:50
1412020-DUP1	Duplicate	12/03/14	11:54
1412023-SRD1	Serial Dilution	12/03/14	11:58
1412020-MS1	Matrix Spike	12/03/14	12:02
C141006-04	FDB	12/03/14	12:06
C141006-06	RDEFF	12/03/14	12:10
1412023-CCV1	Calibration Check	12/03/14	12:17
1412023-CCB1	Calibration Blank	12/03/14	12:20

TDF#:

A-048

TechLaw Inc., ESAT Region 8

INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method:

200.8

Dissolved

Sequence 1D#: 1412025

nstrument ID#: ICPM	S-PE DRC-II	Water	LSR#: A-048
Analysis 1D	Sample Name	Analysis Date	Analysis Time
1412025-ICV1	Initial Cal Check	12/03/14	12:58
1412025-SCV1	Secondary Cal Check	12/03/14	13:01
1412025-ICB1	Initial Cal Blank	12/03/14	13:04
1412025-CRL1	Instrument RL Check	12/03/14	13:07
1412025-IFA1	Interference Check A	12/03/14	13:11
1412025-IFB1	Interference Check B	12/03/14	13:14
1412021-BLK1	Blank	12/03/14	13:17
1412021-BS1	Blank Spike	12/03/14	13:21
C141006-02	AC2EFF	12/03/14	13:24
1412021-DUPI	Duplicate	12/03/14	13:27
1412025-SRD1_	Serial Dilution	12/03/14	13:30
1412021-MS1	Matrix Spike	12/03/14	13:33
C141006-04	FDB	12/03/14	13:36
C141006-06	RDEFF	12/03/14	13:39
1412025-CCV1	Calibration Check	12/03/14	13:52
1412025-CCB1	Calibration Blank	12/03/14	13:56

Certificate of Analysis

TDF#:

A-048

TechLaw Inc., ESAT Region 8 INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method:

200.7

Total Recoverable

Sequence ID#: 1412031

Instrument ID #: ICPOI	E - PE Optima \	Vater	LSR#: A-048
Analysis 1D	Sample Name	Analysis Date	Analysis Time
1412031-ICV1	Initial Cal Check	12/04/14	10:17
1412031-SCV1	Secondary Cal Check	12/04/14	10:20
1412031-ICB1	Initial Cal Blank	12/04/14	10:23
1412031-CRL1	Instrument RL Check	12/04/14	10:26
1412031-IFA1	Interference Check A	12/04/14	10:29
1412031-IFB1	Interference Check B	12/04/14	10:33
1412012-BLK1	Blank	12/04/14	10:37
1412012-SRM1	Reference	12/04/14	10:40
C141006-01	AC2EFF	12/04/14	10:43
1412012-DUP1	Duplicate	12/04/14	10:47
1412031-SRD1	Serial Dilution	12/04/14	10:51
412012-MS1	Matrix Spike	12/04/14	10:54
C141006-03	EDB	12/04/14	10:58
C141006-05	RDEFF	12/04/14	11:02
412031-CCV1	Calibration Check	12/04/14	11:09
1412031-CCB1	Calibration Blank	12/04/14	11:12

TDF#:

A-048

TechLaw Inc., ESAT Region 8

INSTRUMENT ANALYSIS SEQUENCE LOG

Analytical Method:

200.8

Total Recoverable

Sequence 1D#: 1412033

Instrument ID #: ICPM	S-PE DRC-II	Vater	LSR #: A-048
Analysis ID	Sample Name	Analysis Date	Analysis Time
1412033-ICV1	Initial Cal Check	12/04/14	11:20
1412033-SCV1	Secondary Cal Check	12/04/14	11:24
1412033-ICB1	Initial Cal Blank	12/04/14	11:27
1412033-CRL1	Instrument RL Check	12/04/14	11:30
1412033-IFA I	Interference Check A	12/04/14	11:34
1412033-IFB1	Interference Check B	12/04/14	11:37
1412012-BLK2	Blank	12/04/14	11:40
C141006-01	AC2EFF	12/04/14	11:43
1412012-DUP2	Duplicate	12/04/14	11:46
1412033-SRD1	Serial Dilution	12/04/14	11:49
1412012-SRM2	Reference	12/04/14	11:53
1412012-MS2	Matrix Spike	12/04/14	11:56
C141006-03	FDB	12/04/14	11:59
C141006-05	RDEFF	12/04/14	12:02
1412033-CCV1	Calibration Check	12/04/14	12:08
1412033-CCB1	Calibration Blank	12/04/14	12:11

TLF-04.12 Eff. Date: 01/29/2014

ESAT Region 8

Perkin Elmer ELAN DRC-II ICP-MS

2014 MDLs and PQLs Contract: EP-W-06-33

2014	Dissolved MDL u g/L	Tot Rec. MDL	POL H20 ug/L		PQL Soil ug/Kg
Ag 107	0.02	0.05	0.50	1.0	100.0
Al 27	1.43	3.44	5.00	20.0	2000.0
As 75	0.32	0.32	0.50	2.0	200.0
Ba 135	0.04	0.06	5.00	10.0	1000.0
Be 9	0.09	0.08	0.10	0.2	20.0
Cd 111	0.03	0.01	0.10	0.2	20.0
Co 59	0.01	0.01	0.10	0.2	20.0
Cr 52	0.13	0.23	1.00	2.0	200.0
Cu 65	0.09	0.03	0.50	1.0	100.0
Mn 55	0.25	0.14	0.25	0.5	50.0
Mo 98	0.84	0.02	1.00	1.0	100.0
Ni 60	0.04	0.05	0.50	1.0	100.0
Pb 208	0.01	0.02	0.10	0.2	20.0
Sb 121	0.02	0.05	0.50	1.0	100.0
Se 82	0.25	0.42	1.00	2.0	200.0
Tl 205	0.01	0.01	0.50	1.0	100.0
Th 232	0.01	0.05	0.50	1.0	100.0
U 238	0.01	0.01	0.10	0.2	20.0
V 51	0.49	0.77	2.00	3.0	300.0
Zn 66	0.16	0.37	2.00	5.0	500.0

ICP-MS * MDL determined: January 2014

Last Updated: January 2014

ESAT Region 8

Perkin Elmer Optima 4300 ICP-OE

2014 MDLs and PQLs Contract: EP-W-06-33

2014		Dissolved MDL u g/L	Tot Rec.	Practical MDL u g/L	PQL H20 u g/L	PQL Soil mg/Kg	Linear Range	
Ag Sil	ver	0.863	0.833	2.0	10	1.0	5.0	
Al Alı	uminum	17.3	16.00	20	50	5.0	100	
As Ar	senic	6.44	17.6	60	100	10	20	
B Bo	ron	7.83	7.64	50	250	25	100	
Ba Ba	rium	0.163	0.297	2.0	5.0	0.5	20	
Be Be	ryllium	0.075	0.069	2.0	5.0	0.5	10	
Ca Ca	lcium	13.4	14	100	250	25	1000	
Cd Ca	dmium	0.174	0.19	2.0	5.0	0.5	20	
Co Co	balt	0.378	0.908	2.0	5.0	0.5	20	
Cr Ch	romium	0.319	0.301	2.0	5.0	0.5	20	
Cu Co	pper	0.711	0.583	2.0	2.0	0.2	50	
Fe Iro	on	55.82	26.9	100	250	25	500	
K Po	tassium	68.1	177	250	1000	100	500	
Mg Ma	agnesium	50.6	6.68	100	250	25	500	
Mn M:	anganese	0.171	0.219	2.0	5.0	0.5	40	
Mo Mo	olybdenum	1.85	3.68	10	20	2.0	50	
Na So	dium	12.2	14.2	250	1000	100	500	
Ni Ni	ckel	1.92	1.66	5.0	10	1.0	100	
Pb Le	ad	6.83	5.1	10	25	2.5	100	
Sb An	itimony	14.9	7.2	50	100	10	20	
Se Sel	lenium	15.1	16.9	60	100	10	20	
SiO2 Sil	ica	4.84	7.11	250	1000	100	100	
Sr Str	rontium	0.255	0.336	2.0	10	1.0	1.0	
Ti Tit	tanium	0.278	0.397	5.0	20	2.0	10	
Tl Th	allium	7.36	7.4	20	50	5.0	20	
V Va	nadium	1.19	1.730	10	50	5.0	25	
Zn Zir	nc	0.91	2.4	10	20	2.0	200	

ICP-OE * MDL determined: January 2014

Last Updated: January 2014

TechLaw, Inc. Environmental Services Assistance Team 16194 W. 45th Drive, Golden, CO 80403 303-312-7720

Task Order: 02 TDF: A-048 LIMS: C141006 DCN #: EP8-2-1089 Contract: EP-W-13-028

Rico Argentine - Waters - OCT 2014

Sample Calculation for Hardness

Sample ID: C141006-05

Calcium (µg/L) Ca Hardness, mg/L

234000 divide by 1000, then x 2.497 = 584.30

Magnesium (μg/L) Mg Hardness, mg/L

23400 divide by 1000, then x 4.118 = 96.36

Calculated Hardness, mg/L 680.66

TechLaw, Inc. Environmental Services Assistance Team 16194 W. 45th Drive, Golden, CO 80403 303-312-7720

Task Order: 02 TDF: A-048 LIMS: C141006 DCN #: EP8-2-1089 Contract: EP-W-13-028

Rico Argentine – Waters – OCT 2014

Sample Identification Cross-Reference Information

ESAT LIMS ID
C141006-01
C141006-02
C141006-03
C141006-04
C141006-05
C141006-06

Page 1 of 1

USEPA

DateShipped:

CHAIN OF CUSTODY RECORD

No: 8-100714-210859-0003

CarrierName:

Rico Argentine St. Louis Tunne/CO

Cooler#: Lab: ESAT

AirbillNo:

Contact Name: Elliott Petri Contact Phone: 719-216-2754

Lab Phone: 303-312-7798

Lab#	Sample #	Location	Analyses	· Matrix	Collected	Numb Cont	Container	Preservative	MS/MSD
	AC2EFF	Verticl Flow - Outfall	Total Metals	Water	10/7/2014	1	500 mL poly	HNO3 pH<2	
	AC2EFF	Verticl Flow - Outfall	Dissolved Metals	Water	10/7/2014	1	500 mL poly	HNO3 pH<2	
	FDB	Flow Distrobution Box - Influent	Total Metals	Water	10/7/2014	1	500 mL poly	HNO3 pH<2	
	FDB	Flow Distrobution Box - Influent	Dissolved Metals	Water	10/7/2014	1	500 mL poly	HNO3 pH<2	
	RDEFF	Horizontal Wetland - Outfall Rock Drain	Total Metals	Water	10/7/2014	1	500 mL poly	HNO3 pH<2	
	RDEFF	Horizontal Wetland - Outfall Rock Drain	Dissolved Metals	Water	10/7/2014	1	500 mL poly	HNO3 pH<2	
		· · · · · · · · · · · · · · · · · · ·							

Special Instructions: TDF A-048		SAMPLES TRANSFERRED FROM
	sent email authorizing to Chapae bottle date to	CHAIN OF CUSTODY #
	match the classe coc. of 10/8/14	

Items/Reason	Relinquished by	Date	Received by	Date	Time	Items/Reason	Relinquished By	Date	Received by	Date	Time
	600	10/8/14	Q-R-	10/8/14							
										-	
											-
											-

ESAT Technical Direction Form Contract No. EPW13028 EPA Region 8

Site ID: 08BU		Date Issued:	6/3/2014	Ĵ	Date
TDF ID: A-048	1	Date Updated:	ļ	•	Closed By:
Details: The Co	argentine 2014 Analytical Supprototors shall analyze appro I Superfund site as indicated ons (Jan Christner) and sent	eximately 10 surface in the Analytical In	formation Se	ction. The sample	s will be collected by Weston
	'Submsk 02b: Inorganic Cl e RPM is Steve Way.	nemistry			
Analytical Infor	mation:		; }		
MATRIX ☑ Water □ Se	oils 🗆 Vegetation 🗆 Bio	eta			
WET CHEM TSS TDS Other	□ DOC □ Alk □ Chlo	ride 🗆 Sulfate 🗖	Fluoride 🗆	Nitrate 🗆 Nitrite	
METALS ☑ Dissolved ☑ 200.7: □ Ag	Total Recoverable □ Tota ☑ Al □ As □ Ba ŒE	•		. Cr 🖸 Cu 🗹	Fe ⊠ K ⊠ Mg
200.8: ☑ Ag	O Mo Ø Na O Ni O F O Al Ø As Ø Ba Ø O Th Ø Tl O U Ø N	6 g Cd g Co 7 (g/25).	☑ Cr ☑ Cu		
7470/7471/747	□ Hg ·	Ju,	•	•	
FIBERS □ PLM □, TEN	J	12/03/	14		
Deliverables ID	Descrij	btion		Due Date	Submission Date
	al deliverable package to Ta	sk Monitor no later	than 30 days		

Sample Receipt Form - TLF-51.00

Pro	te Received: 10/8/14 Time Received: 8:45 B	TD	F#: <u>/</u> 4 -	-048	<u>.</u>
Dat	te Received: 10/8/14 Time Received: 8:45 B	y:_ <u>-</u>	Janotte	Gessi	ica. E
	, ,			Í	
1	Airbill/shipping documents present?		Drop Off	Yes	No
2		/A	None	Yes	No
3	Custody seals on sample containers present and intact?	//:	None	Yes	No
4	Chain of Custody (COC) present?			(Yes)	No
5	COC and sample container information agree?			Yes	No
6	Aqueous samples preserved correctly, if required?		N/A	(Yes)	No
	Samples received within holding times for requested analyses	' ?		Yes	No
 -	Sufficient sample volume for requested analyses?			Yes	No
9	Sample containers intact and not leaking?			Yes	No
10	Sample containers appropriate for requested analyses?			Yes	_ No
11	Samples shipped on ice?			Yes	No
12	Cooler temperature(s) ≤ 6.0 °C?		N/A	Yes	No
	Cooler #: 1 2		3	4	5
	Temperature (°C): <u>5, 9</u>				
Comments and Additional Information:					
			_		
<u> </u>					
Clie	ent notified of anomalies, if necessary?		N/A	Yes	No
Anomalies noted in case narrative and data qualified, if necessary?		N/A	Yes	No	

TechLaw, Inc. Environmental Services Assistance Team 16194 W. 45th Drive, Golden, CO 80403 303-312-7721

Contract: EP-W-13-028

Certificates of Analysis

Valid through February 2015

Perkin Elmer Optima ICP-OE Perkin Elmer ELAN ICP-MS NIPPON NIC MA-3 Perkin Elmer FIMS 100

- > Initial Calibration Verification (ICV) Standards
- Laboratory Check Standards (LCS)
- > Matrix Spike Solutions
- ➤ Interference Check (ICSA / AB) Standards

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

CERTIFICATE OF ANALYSIS

QC SILVER STD 1K PPM IN 3.5

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

(E)/(PATRIES

Feb. 01, 2015

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 µg/mL Silver in 5% (v/v) HNO3

Catalog Number:

CGAG1-1, CGAG1-2, and CGAG1-5

Lot Number:

G2-AG03035

Starting Material:

Ag shot

Starting Material Purity (%):

100.0000

Starting Material Lot No:

1641

Matrix:

5% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,002 ± 6 µg/mL -weighted mean-

Certified Density:

1.026 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_1} where two methods of characterization are used, is the weighted mean of the two results = $[(w_a)(X_a) + (w_b)(X_b)]$

Xa is the mean of Assay Method A with standard uncertainty Uchara.

 X_b is the mean of Assay Method B with standard uncertainty $U_{char \, b}$.

 \textbf{w}_{a} and \textbf{w}_{b} = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char a})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2));$

 $w_b = (1/U_{char\ b})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char\ a\&b}^2 + u_{bb}^2 + u_{its}^2 + u_{sts}^2\right)^{1/2}$

 $U_{char} \ _{a\&b} = [(w_a)^2 (U_{char} \ _a)^2 + (w_b)^2 (U_{char} \ _b)^2]^{0.5}; \ U_{char} \ _a$ and $U_{char} \ _b$ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; $u_{bb} = bottle$ to bottle homogeneity standard uncertainty; $u_{its} = long$ term stability standard uncertainty (storage); $u_{sts} = short$ term stability standard uncertainty (transportation).

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty U_{char} a.

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char}^2 + u_{bb}^2 + u_{its}^2 + u_{sts}^2)^{\frac{1}{2}}$

 $U_{\text{char}\,a}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; $u_{bb} = \text{bottle to bottle homogeneity}$ standard uncertainty; $u_{tts} = \text{long term stability}$ standard uncertainty (storage); $u_{sts} = \text{short term stability}$ standard uncertainty (transportation).

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

QC ALLMINUM STD 1K PPM 1 tel: 800,669.6799 · 540.585.3030

fax: 540,585,3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

图/图/图/图图

Feb. 01, 2015

DESCRIPTION OF CRM 2.0

1000 µg/mL Aluminum in 3% (v/v) HNO3

Catalog Number:

CGAL1-1, CGAL1-2, and CGAL1-5

Lot Number:

F2-AL04124

Starting Material:

Al Shot

Starting Material Purity (%):

99.9991

Starting Material Lot No:

1757

Matrix:

3% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1.005 ± 6 µg/mL -weighted mean-

Certified Density:

1.019 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

(x̄) = mean

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 $\left[\Sigma(s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\left[\Sigma(s_i)^2\right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6,10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

Christiansburg, VA 24073 · USA

inorganicventures.com

CERTIFICATE OF ANALYSIS

QC ALLMINUM STD 10K PPM

140115B

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration

EXAPTERES

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

Laboratories."

10000 µg/mL Aluminum in 7 % (v/v) HNO3

Catalog Number:

CGAL10-1, CGAL10-2, and CGAL10-5

Lot Number:

G2-AL04137

Starting Material:

Al Shot

Starting Material Purity (%):

99.9993

Starting Material Lot No:

1757,1758

Matrix:

7 % (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

10,049 ± 42 µg/mL -no weighted mean-

Certified Density:

1.083 (measured at 20 ± 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_b} where two methods of characterization are used, is the weighted mean of the two results = $[(w_a)(X_a) + (w_b)(X_b)]$

Xa is the mean of Assay Method A with standard uncertainty Uchara.

 X_{b} is the mean of Assay Method B with standard uncertainty $\;U_{char\,b.}$

 \textbf{w}_{a} and \textbf{w}_{b} = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char\ a})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2));$

 $W_b = (1/U_{char \, b})^2 / ((1/U_{char \, a})^2 + (1/U_{char \, b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char}^2 = u_{bb}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2\right)^{1/2}$

 U_{char} $_{a\&b} = [(w_a)^2 (U_{char})^2 + (w_b)^2 (U_{char})^2]^{0.5}$; U_{char} $_{a}$ and U_{char} $_{b}$ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; $u_{bb} = bottle$ to bottle homogeneity standard uncertainty; $u_{lts} = long$ term stability standard uncertainty (storage); $u_{sts} = short$ term stability standard uncertainty (transportation).

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty U_{char} a.

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char a}^2 + u_{bb}^2 + u_{fts}^2 + u_{sts}^2)^{\frac{1}{2}}$

 U_{char} a is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{tts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

300 Technology Drive Christiansburg, VA 24073 - USA inorganicventures.com

tel: 800.669.6799 - 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

TEXMONERES Feb. 01, 2015

2.0 DESCRIPTION OF CRM 1000 µg/mL Arsenic in 2% (v/v) HNO3

Catalog Number:

CGAS1-1, CGAS1-2, and CGAS1-5

Lot Number:

G2-AS02102

Starting Material:

As Lump

Starting Material Purity (%):

99.9995

Starting Material Lot No:

1814

Matrix:

2% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,001 ± 5 µg/mL -weighted mean-

Certified Density:

1.012 (measured at $20 \pm 1^{\circ}$ C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM}, where two methods of characterization are used, is the weighted mean of the two results = $[(w_a)(X_a) + (w_b)(X_b)]$

X_a is the mean of Assay Method A with standard uncertainty U_{char a}.

Xb is the mean of Assay Method B with standard uncertainty Uchar b.

wa and we = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{chara})^2 / ((1/U_{chara})^2 + (1/U_{charb})^2));$

 $W_b = (1/U_{charb})^2 / ((1/U_{charb})^2 + (1/U_{charb})^2))$

CRM Expanded Uncertainty (±) = U_{CRM} = k (U²_{char a&b} + u²_{bb} + u²_{tts} + u²_{sts}) 1/2

 U_{char} $a_{bb} = [(w_a)^2 (U_{char})^2 + (w_b)^2 (U_{char})^2]^{0.5}$; U_{char} a and U_{char} b are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; uits = long term stability standard uncertainty (storage); usts = short term stability standard uncertainty (transportation).

Certified Value, XCRM, where one method of characterization is used, is the mean of individual results:

X_a = Mean X_a is the mean of Assay Method A with standard uncertainty Uchar a.

CRM Expanded Uncertainty (±) = U_{CRM} = k (U²char a + $u^2_{bb} + u^2_{tts} + u^2_{sts}$

Uchar a is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; ubb = bottle to bottle homogeneity standard uncertainty; u_{lts} = long term stability standard uncertainty (storage); usts = short term stability standard uncertainty (transportation).

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 µg/mL Gold HNO3 in 2% (v/v) HNO3

Catalog Number:

CGAUN1-1, CGAUN1-2, and CGAUN1-5

Lot Number:

G2-AU04033

Starting Material:

HAuCl4xH2O

GOLD STD, 1000UG/ML

99.9900

Starting Material Purity (%): Starting Material Lot No:

1760

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,001 ± 6 µg/mL weighted mean

Certified Density:

1.010 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_h} where two methods of characterization are used, is the weighted mean of the two results = $[(w_a)(X_a) + (w_b)(X_b)]$

Xa is the mean of Assay Method A with standard uncertainty Uchar a.

 X_b is the mean of Assay Method B with standard uncertainty U_{char} b.

 \mathbf{w}_a and \mathbf{w}_b = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char\ a})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2));$

 $w_b = (1/U_{char\ b})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char\ a\&b}^2 + u_{bb}^2 + u_{its}^2 + u_{sts}^2\right)^{1/2}$

 $U_{char\ a\&b} = [(w_a)^2 \, (U_{char\ a})^2 + (w_b)^2 \, (U_{char\ b})^2]^{0.5}; \ U_{char\ a} \ \text{and} \ U_{char\ b} \ \text{are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; <math>u_{bb} = \text{bottle to bottle homogeneity standard uncertainty;} \ u_{lts} = \text{long term stability standard uncertainty (storage);} \ u_{sts} = \text{short term stability standard uncertainty (transportation).}$

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty U_{chara} .

CRM Expanded Uncertainty (\pm) = U_{CRM} = k (U²_{char a} + u²_{bb} + u²_{lts} + u²_{sts}) $^{1/2}$

 $U_{\text{char a}}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{lts} = long term stability standard uncertainty (storage); u_{stb} = short term stability standard uncertainty (transportation).

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 µg/mL Barium in 0.1%(v/v) HNO3

Catalog Number:

CGBA1-1, CGBA1-2, and CGBA1-5

Lot Number:

F2-BA02076

Starting Material:

Ba(NO3)2

Starting Material Purity (%):

99.9998

Starting Material Lot No:

BAE42012A1

Matrix:

0.1%(v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

996 ± 5 µg/mL -No weighted mean-

Certified Density:

1.000 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{n} x_{i}$

 $(\bar{X}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $2 \left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive

inorganicventures.com

RTIFICATE OF ANALYS

Christiansburg, VA 24073 • USA

fax: 540.585.3012

info@Inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Feb. 01, 2015

DESCRIPTION OF CRM 2.0

1000 µg/mL Beryllium in 3% (v/v) HNO3

Catalog Number:

CGBE1-1, CGBE1-2, and CGBE1-5

Lot Number:

F2-BE02021

Starting Material:

Be4O(OOCCH3)6

Starting Material Purity (%):

99.9999

Starting Material Lot No:

1772

Matrix:

3% (v/v) HNO3

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

 $1,003 \pm 4 \mu g/mL$ - weighted mean

Certified Density:

1.022 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $2 \left[\sum (s_i)^2 \right]^{1/2}$

2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{2}$ = The square root of the sum of the squares of the most common errors (where's stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

CERTIFICATE OF ANALYSIS

QC BORON STD IK PPM IN H2

tel: 800.669.6799 · 540.585.3030

fax: 540.585,3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 μg/mL Boron in H2O

Catalog Number:

CGB1-1, CGB1-2, and CGB1-5

Lot Number:

F2-B02109

Starting Material:

H3BO3

Starting Material Purity (%):

99.9995

Starting Material Lot No:

1631

Matrix:

H20

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

999 ± 5 μg/mL -weighted mean-

Certified Density:

1.000 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

. .

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^{1/2}

2 = the coverage factor.

 $\left[\left.\Sigma(s_i)^2\right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

C CALCIUM STD IK PPM IN

140115H

tel: 800.669.6799 - 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 - USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

EXPORTE

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 μg/mL Calcium in 0.1% (v/v) HNO3

Catalog Number:

CGCA1-1, CGCA1-2, and CGCA1-5

Lot Number:

F2-CA04058

Starting Material:

CaO

Starting Material Purity (%):

99.9974

Starting Material Lot No:

1635

Matrix:

0.1% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 5 µg/mL - weighted mean

Certified Density:

1.002 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left. \Sigma(s_i)^2 \right]^{\frac{1}{2}} =$ The square root of the sum of the squares of the most common errors (where stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

· "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

· This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

 $1,001 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3109a Lot Number: 050825

Assay Method #2

 $998 \pm 3 \mu g/mL$

EDTA NIST SRM 928 Lot Number: 928

tel: 800.669.6799 · 540.585.3030

fax: 540,585,3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 - USA inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

EXPRINES

Feb. 01, 2015

2.0 DESCRIPTION OF CRM 10000 ug/mL Calcium in 2% (v/v) HNO3

Catalog Number:

CGCA10-1, CGCA10-2, and CGCA10-5

Lot Number:

1.0

4.0

G2-CA04084

Starting Material:

CaO

Starting Material Purity (%):

99.9990

Starting Material Lot

Multiple Lots

Mo: Matrix:

2% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

9,972 ± 21 µg/mL -weighted mean-

Certified Density:

1.039 g/mL (measured at 20 ± 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM}, where two methods of characterization are used, is the weighted mean of the two results = $[(W_a)(X_a) + (\dot{W}_b)(X_b)]$

Xa is the mean of Assay Method A with standard uncertainty Uchara.

Xb is the mean of Assay Method B with standard uncertainty Ucharb.

wa and wb = The weighting factors for each method calculated using the inverse square of the variance:

 $W_a = (1/U_{char a})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2));$

 $W_b = (1/U_{char b})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char}^2 a_{bb} + u_{bb}^2 + u_{lts}^2 + u_{sts}^2\right)^{\frac{1}{2}}$

 $U_{char \ a\&b} = [(W_a)^2 (U_{char \ a})^2 + (W_b)^2 (U_{char \ b})^2]^{0.5}$; $U_{char \ a}$ and $U_{char \ b}$ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; ubb = bottle to bottle homogeneity standard uncertainty; u_{lts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

Certified Value, XCRM, where one method of characterization is used, is the mean of individual results:

X_a = Mean X_a is the mean of Assav Method A with standard uncertainty Uchara.

CRM Expanded Uncertainty (±) = U_{CRM} = k (U²_{char a} + $u^2_{bb} + u^2_{its} + u^2_{sits})^{\frac{1}{2}}$

Uchar a is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weightr and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{1ts} = long term stability standard uncertainty (storage); usts = short term stability standar uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

QC CADMIUM STD IK PPM IN

tel: 800.669.6799 - 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

TO PRINCE

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 µg/mL Cadmium in 3% (v/v) HNO3

Catalog Number:

CGCD1-1, CGCD1-2, and CGCD1-5

Lot Number:

G2-CD02043

Starting Material:

Cd shot

Starting Material Purity (%):

100.0000

Starting Material Lot No:

1714

Matrix:

3% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,004 ± 5 µg/mL -weighted mean-

Certified Density:

1.016 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{n} x_{i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $2 \left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\left[\left[\Sigma(s_i)^2 \right]^{1/2} \right] = The square root of the sum of the squares of the most common errors (where stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.$

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

QC COBALT STD 1K PPM IN 2

fax: 540.585.3012 info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

(E) PIPIES

Feb. 01, 2015

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Cobalt in 3% (v/v) HNO3

Catalog Number:

CGCO1-1, CGCO1-2, and CGCO1-5

Lot Number:

F2-C002052

Starting Material:

Co powder

Starting Material Purity (%):

99.9982

Starting Material Lot No:

1749

Matrix:

3% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,003 ± 5 µg/mL - weighted mean

Certified Density:

1.018 g/mL (measured at $20 \pm 1^{\circ}$ C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left(\sum(s_i)^2\right]^2\right]$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 - USA Inorganicventures.com QC CHROMIUM STD 1K PPM1.

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

into@inorganicventures.com

原用的原理等

Feb. 01, 2015

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 µg/mL Chromium (+3) in 2% (v/v) HNO3

Catalog Number:

CGCR(3)1-1, CGCR(3)1-2, and CGCR(3)1-5

Lot Number:

G2-CR03072

Starting Material:

Cr pieces

Starting Material Purity (%):

99.9829

Starting Material Lot No:

1661

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

998 ± 4 µg/mL -No weighted mean-

Certified Density:

1.013 g/mL (measured at 20 ± 1 °C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM} , where two methods of characterization are used, is the weighted mean of the two results = [(w_a) (X_a) + (w_b) (X_b)]

X_a is the mean of Assay Method A with standard uncertainty U_{char a}.

Xb is the mean of Assay Method B with standard uncertainty Uchar b.

 \mathbf{w}_a and $\mathbf{w}_b = \text{The weighting factors for each method calculated using the inverse square of the variance:$

 $w_a = (1/U_{char a})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2));$

 $w_b = (1/U_{char \, b})^2 / ((1/U_{char \, a})^2 + (1/U_{char \, b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char\ a\&b}^2 + u_{bb}^2 + u_{its}^2 + u_{sts}^2\right)^{1/2}$

 U_{char} $a_{Sb} = [(w_a)^2 (U_{char})^2 + (w_b)^2 (U_{char})^2]^{0.5}$; U_{char} a and U_{char} b are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{lts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

Certified Value, X_{CRM} , where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty U_{char} a.

CRM Expanded Uncertainty (±) = U_{CRM} = k ($U^2_{char\ a}$ + u^2_{bb} + u^2_{its} + u^2_{sts}) y_2

 $U_{char\,a}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{lts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

QC COPPER STD 1K PPM IN 24

tel: 800.669.6799 · 540.585.3030

IENMENTES

Feb. 01, 2015

fax: 540.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 µg/mL Copper in 3% (v/v) HNO3

Catalog Number:

CGCU1-1, CGCU1-2, and CGCU1-5

Lot Number:

G2-CU03007

Starting Material:

Cu shot

Starting Material Purity (%):

100.0000

Starting Material Lot No:

1718

Matrix:

3% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,003 ± 5 µg/ml_ weighted mean

Certified Density:

1.016 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_1} where two methods of characterization are used, is the weighted mean of the two results = $[(w_3)(X_0) + (w_b)(X_b)]$

Xa is the mean of Assay Method A with standard uncertainty Uchara.

X_b is the mean of Assay Method B with standard uncertainty U_{char b}.

 \mathbf{w}_a and \mathbf{w}_b = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char a})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2));$

 $w_b = (1/U_{char\ b})^2/((1/U_{char\ a})^2 + (1/U_{char\ b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char\ a\&b}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2)^{1/2}$

 U_{char} $a_{8b} = [(w_a)^2 (U_{char})^2 + (w_b)^2 (U_{char})^2]^{0.5}$; U_{char} a and U_{char} b are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor \approx 2 in all cases at Inorganic Ventures; $u_{bb} = bottle$ to bottle homogeneity standard uncertainty; $u_{lts} = long$ term stability standard uncertainty (storage); $u_{sts} = short$ term stability standard uncertainty (transportation).

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty $U_{\text{char }a}$.

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char a}^2 + u_{bb}^2 + u_{its}^2 + u_{sts}^2)^{1/2}$

 $U_{\text{char}\,a}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{tts} = long term stability standard uncertainty (storage); u_{ste} = short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 - USA inorganicventures.com QC IRON STD 1K PPM IN 1.4%

140115N

tet: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

TEXPORTES

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 μg/mL Iron in 2% (v/v) HNO3

Catalog Number:

CGFE1-1, CGFE1-2, and CGFE1-5

Lot Number:

G2-FE04030

Starting Material:

Fe pieces

Starting Material Purity (%):

99.9977

Starting Material Lot No:

1762

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

999 ± 4 µg/mL weighted mean

Certified Density:

1.010 g/mL (measured at 20 ± 1 °C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_1} where two methods of characterization are used, is the weighted mean of the two results = [(w_a) (X_a) + (w_b) (X_b)]

Xa is the mean of Assay Method A with standard uncertainty Uchara.

X_b is the mean of Assay Method B with standard uncertainty U_{char b}.

 w_{a} and w_{b} = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char a})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2));$

 $W_b = (1/U_{char\ b})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2)^{\frac{1}{2}}$

 $\begin{array}{l} U_{\text{char a\&b}} = [(w_a)^2 \, (U_{\text{char a}})^2 + (w_b)^2 \, (U_{\text{char b}})^2]^{0.5} \, ; \, U_{\text{char a}} \, \text{ and } \, U_{\text{char b}} \, \text{ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; <math>u_{\text{cb}}$ = bottle to bottle homogeneity standard uncertainty; u_{lts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

Certified Value, X_{CRM} , where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty $U_{char\,a}$.

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char\ a}^2 + u_{bb}^2 + u_{its}^2 + u_{sts}^2)^{\gamma_c}$

 $U_{\text{char}\,a}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{tb} = bottle to bottle homogeneity standard uncertainty; u_{tts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

QC IRON STD 10K PPM IN 3.5%

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

10000 μg/mL Iron in 5 % (v/v) HNO3

Catalog Number:

CGFE10-1, CGFE10-2, and CGFE10-5

Lot Number:

G2-FE04029

Starting Material:

Fe pieces

Starting Material Purity (%):

99.9977

Starting Material Lot No:

1762

Matrix:

5 % (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

9,977 ± 24 µg/mL -weighted mean-

Certified Density:

1.035 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_1} , where two methods of characterization are used, is the weighted mean of the two results = $[(w_a)(X_a) + (w_b)(X_b)]$

 X_a is the mean of Assay Method A with standard uncertainty U_{char} a.

 X_b is the mean of Assay Method B with standard uncertainty $U_{char \, b}$.

 \mathbf{w}_a and \mathbf{w}_b = The weighting factors for each method calculated using the inverse square of the variance:

 $W_a = (1/U_{char\ a})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2));$

 $w_b = (1/U_{char b})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2))$

CRM Expanded Uncertainty (±) = U_{CRM} = k ($U_{char\ a\&b}^2$ + u_{bb}^2 + u_{its}^2 + u_{sts}^2) 7a

 U_{char} $_{a\&b} = [(w_a)^2 (U_{char})^2 + (w_b)^2 (U_{char})^2]^{0.5}$; U_{char} $_a$ and U_{char} $_b$ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; $u_{bb} = bottle$ to bottle homogeneity standard uncertainty; $u_{lts} = long$ term stability standard uncertainty (storage); $u_{sts} = short$ term stability standard uncertainty (transportation).

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty U_{char} _a.

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char a}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2)^{1/2}$

 $U_{\rm char}$ a is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; $u_{\rm th}$ = bottle to bottle homogeneity standard uncertainty; $u_{\rm tts}$ = long term stability standard uncertainty (storage); $u_{\rm sts}$ = short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

Feb. 01, 2015

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

CERTIFICATE OF ANALYSIS

2.0 **DESCRIPTION OF CRM**

1000 µg/mL Gadolinium in 7% (v/v) HNO3

Catalog Number:

CGGD1-1, CGGD1-2, and CGGD1-5

Lot Number:

G2-GD01049

Starting Material:

Gd2O3

Starting Material Purity (%):

99.9987

Starting Material Lot No:

1675

Matrix:

7% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

999 ± 6 µg/mL -weighted mean-

Certified Density:

1.037 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{n} x_{i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $2 \left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{\gamma_2}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

CERTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

图》《中联语》

Feb. 01, 2015

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the

manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration

Competence of Reference Material Producers" and ISO 9001 registered

Laboratories."

ACCREDITED
Testing Laboratory
Cesting Laboratory

2.0 DESCRIPTION OF CRM

1000 µg/mL Mercury in 5% (v/v) HNO3

Catalog Number:

CGHG1-1, CGHG1-2, and CGHG1-5

Lot Number:

F2-HG02105

Starting Material:

Hg metal

Starting Material Purity (%):

99.9997

Starting Material Lot No:

1780

Matrix:

5% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 6 µg/mL -weighted mean-

Certified Density:

1.018 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left(\Sigma(s_i)^2\right]^{\frac{1}{2}}\right]$ = The square root of the sum of the squares of the most common errors (where s' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

999 ± 4 µg/mL

ICP Assay NIST SRM 3133 Lot Number: 061204

Assay Method #2

 $1,001 \pm 3 \mu g/mL$

EDTA NIST SRM 928 Lot Number: 928

300 Technology Drive Christiansburg, VA 24073 - USA inorganicventures.com

tel: 800.669.6799 - 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

EXPONENCE:

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 µg/mL Potassium in 0.1% (v/v) HNO3

Catalog Number:

CGK1-1, CGK1-2, and CGK1-5

Lot Number:

G2-K03038

Starting Material:

K2CO3

Starting Material Purity (%):

99.9985

Starting Material Lot No:

014K055

Matrix:

4.0

0.1% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,003 ± 4 µg/mL -weighted mean-

Certified Density:

1.000 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_1} , where two methods of characterization are used, is the weighted mean of the two results = $[(w_a)(X_a) + (w_b)(X_b)]$

Xa is the mean of Assay Method A with standard uncertainty Uchara.

 X_b is the mean of Assay Method B with standard uncertainty $U_{char \ b}$.

 w_a and w_b = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char\ a})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2));$

 $w_b = (1/U_{char\;b})^2 \, / \, ((1/U_{char\;a})^2 + (1/U_{char\;b})^2))$

CRM Expanded Uncertainty (±) = U_{CRM} = k (U²_{char a&b} + u²_{bb} + u²_{lts} + u²_{sts}) ½

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty U_{chara} .

CRM Expanded Uncertainty (±) = U_{CRM} = k ($U^2_{char\ a}$ + u^2_{bb} + u^2_{lts} + u^2_{sts}) $^{\gamma_2}$

 $U_{\text{char a}}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at lnorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{tts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories"

EXPORTES

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

10000 µg/mL Potassium in 2% (v/v) HNO3

Catalog Number:

CGK10-1, CGK10-2, and CGK10-5

Lot Number:

F2-K03033

Starting Material:

KNO3

Starting Material Purity (%):

99.9995

Starting Material Lot No:

1727

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

10.022 ± 60 µg/mL - weighted mean

Certified Density:

1.025 g/mL (measured at 20 ± 1 °C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

Christiansburg, VA 24073 - USA

inorganicventures.com

CERTIFICATE OF ANALYSIS

QC LITHIUM STD 1K PPM IN ...

140115U

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

EXTEMPLES

Feb. 01, 2015

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025

"General Requirements for the Competence of Testing and Calibration

2.0 DESCRIPTION OF CRM

Laboratories."

1000 μg/mL Lithium in 0.1% (v/v) HNO3

Catalog Number:

CGLI1-1, CGLI1-2, and CGLI1-5

Lot Number:

F2-LI02144

Starting Material:

Li2CO3

Starting Material Purity (%):

99.9989

Starting Material Lot No:

1312

Matrix:

0.1% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 6 µg/mL - weighted mean

Certified Density:

1.005 g/mL (measured at 20 ± 1 °C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \underline{\sum x_i}$

 $(\bar{x}) = mean$

l

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^{1/2}

2 = the coverage factor.

 $\left[\left[\Sigma(s_i)^2 \right]^{\frac{1}{2}} \right]$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

1.0

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

Feb. 01, 2015

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 µg/mL Magnesium in 0.1% (v/v) HNO3

Catalog Number:

CGMG1-1, CGMG1-2, and CGMG1-5

Lot Number:

F2-MG03116

Starting Material:

Mg chips

Starting Material Purity (%):

99.9998

Starting Material Lot No:

1484

Matrix:

0.1% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1003 ± 6 µg/mL -weighted mean-

Certified Density:

1.003 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\left.\Sigma(s_i)^2\right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 - USA inorganicventures.com

CERTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540,585.3030 fax: 540,585.3012

info@inorganicventures.com

EXPORTES

Feb. 01, 2015

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

10000 µg/mL Magnesium in 2% (v/v) HNO3

Catalog Number:

CGMG10-1, CGMG10-2, and CGMG10-5

Lot Number:

G2-MG03120

Starting Material:

Mg chips

Starting Material Purity (%):

99.9995

Starting Material Lot No:

1484

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

9,973 ± 20 µg/mL -weighted mean-

Certified Density:

1.053 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM} , where two methods of characterization are used, is the weighted mean of the two results = $[(w_a)(X_a) + (w_b)(X_b)]$

Xa is the mean of Assay Method A with standard uncertainty Uchara.

X_b is the mean of Assay Method B with standard uncertainty U_{char b}

 \mathbf{w}_a and \mathbf{w}_b = The weighting factors for each method calculated using the inverse square of the variance;

 $w_a = (1/U_{char a})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2));$

 $w_b = (1/U_{charb})^2 / ((1/U_{chara})^2 + (1/U_{charb})^2)$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char a8b}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2\right)^{\frac{1}{2}}$

 $U_{char} \ a_{Ab} = [(w_a)^2 (U_{char} \ a)^2 + (w_b)^2 (U_{char} \ b)^2]^{0.5}$; $U_{char} \ a$ and $U_{char} \ b$ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; $u_{bb} = bottle$ to bottle homogeneity standard uncertainty; $u_{lis} = long$ term stability standard uncertainty (storage); $u_{sts} = short$ term stability standard uncertainty (transportation).

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty U_{chara} .

CRM Expanded Uncertainty (±) = U_{CRM} = k (U_{char}^2 + u_{bb}^2 + u_{bb}^2 + u_{sts}^2) ½

 $U_{\text{char}\ a}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at inorganic Ventures; $u_{bb}=$ bottle to bottle homogeneity standard uncertainty; $u_{ts}=$ long term stability standard uncertainty (storage); $u_{sb}=$ short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 - USA Inorganicventures.com

tel: 800,669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

EMPRES

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 µg/mL Manganese in 3% (v/v) HNO3

Catalog Number:

CGMN1-1, CGMN1-2, and CGMN1-5

Lot Number:

G2-MN02106

Starting Material:

Mn flake

Starting Material Purity (%):

99.9948

Starting Material Lot No:

1783

Matrix:

3% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,006 ± 5 µg/mL -weighted mean-

Certified Density:

1.020 g/mL (measured at $20 \pm 1^{\circ}\text{C}$)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^{1/2}

2 = the coverage factor.

 $\left[\left. \Sigma (s_i)^2 \right]^{\frac{1}{2}} \right]$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com MOLYBDENUM, 1000PPM, 125

tel: 800.669.6799 - 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

宣傳順應等

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 µg/mL Molybdenum in H2O / tr. NH4OH

Catalog Number:

CGMO1-1, CGMO1-2, and CGMO1-5

Lot Number:

G2-MO02053

Starting Material:

(NH4)2MoO4

Starting Material Purity (%):

99.9965

Starting Material Lot No:

1734

Matrix:

H2O / tr. NH4OH

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,004 ± 6 µg/mL -No weighted mean-

Certified Density:

1.000 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_1} , where two methods of characterization are used, is the weighted mean of the two results = $[(w_a)(X_a) + (w_b)(X_b)]$

X_a is the mean of Assay Method A with standard uncertainty U_{char a}.

Xb is the mean of Assay Method B with standard uncertainty Ucharb.

 w_a and w_b = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char\ a})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2));$

 $W_b = (1/U_{char \, b})^2 / ((1/U_{char \, a})^2 + (1/U_{char \, b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char a\&b}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2\right)^{1/2}$

 $U_{char\ a\&b} = [(w_a)^2 \, (U_{char\ a})^2 + (w_b)^2 \, (U_{char\ b})^2]^{0.5}$; $U_{char\ a}$ and $U_{char\ b}$ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{lbs} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

Certified Value, X_{CRM} , where one method of characterization is used, is the mean of individual results:

 $X_a = \text{Mean} \ \ X_a$ is the mean of Assay Method A with standard uncertainty $U_{\text{char} \ a}$.

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char a}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2)^{\frac{1}{2}}$

 $U_{char\,a}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage feator = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{lts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 μg/mL Sodium in 0.1% (v/v) HNO3

Catalog Number:

CGNA1-1, CGNA1-2, and CGNA1-5

Lot Number:

G2-NA03108

Starting Material:

Na2CO3

Starting Material Purity (%):

99.9992

Starting Material Lot No:

1628

Matrix:

0.1% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

996 ± 4 μg/mL -weighted mean-

Certified Density:

1.001 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM} , where two methods of characterization are used, is the weighted mean of the two results = [(w_a) (X_a) + (w_b) (X_b)]

Xa is the mean of Assay Method A with standard uncertainty Uchara.

 X_b is the mean of Assay Method B with standard uncertainty $U_{char \, b}$.

 \mathbf{w}_a and \mathbf{w}_b = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char a})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2));$

 $w_b = (1/U_{char \, b})^2 / ((1/U_{char \, a})^2 + (1/U_{char \, b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char\ a\&b}^2 + u_{bb}^2 + u_{its}^2 + u_{sts}^2\right)^{1/2}$

 $\begin{array}{l} U_{char\ a\&b} = [(w_a)^2\,(U_{char\ a})^2 + (w_b)^2\,(U_{char\ b})^2]^{0.5};\ U_{char\ a}\ and\ U_{char\ b}\ are\ the\ square\ root\ of\ the\ sum\ of\ the\ square\ for\ characterization\ which\ include\ instrumental\ measurement,\ density,\ NIST\ SRM\ uncertainty,\ weighing,\ and\ volume;\ k,\ coverage\ factor = 2\ in\ all\ cases\ at\ Inorganic\ Ventures;\ u_{bb} =\ bottle\ to\ bottle\ homogeneity\ standard\ uncertainty;\ u_{lts} =\ long\ term\ stability\ standard\ uncertainty\ (storage);\ u_{sts} =\ short\ term\ stability\ standard\ uncertainty\ (transportation). \end{array}$

Certified Value, X_{CRM} , where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty $U_{char\ a}$.

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U^2_{char} + u^2_{bb} + u^2_{its} + u^2_{sts})^{\frac{1}{2}}$

 U_{char} a is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{tts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

EXPURIES,

Feb. 01, 2015

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

10000 µg/mL Sodium in 2% (v/v) HNO3

Catalog Number:

CGNA10-1, CGNA10-2, and CGNA10-5

Lot Number:

G2-NA03110

Starting Material:

Na2CO3

Starting Material Purity (%):

99.9992

Starting Material Lot No:

1628

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

10,008 ± 17 µg/mL -weighted mean-

Certified Density:

1.033 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_1} where two methods of characterization are used, is the weighted mean of the two results = [(w_a) (X_a) + (w_b) (X_b)]

Xa is the mean of Assay Method A with standard uncertainty Uchara.

X_b is the mean of Assay Method B with standard uncertainty U_{char b}.

 \textbf{w}_{a} and \textbf{w}_{b} = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char\ a})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2));$

 $w_b = (1/U_{char\;b})^2 \, / \, ((1/U_{char\;a})^2 + (1/U_{char\;b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{Char a&b}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2\right)^{\frac{1}{2}}$

 $\begin{array}{l} U_{char~a\&b} = [(w_a)^2 \, (U_{char~a})^2 + (w_b)^2 \, (U_{char~b})^2]^{0.5}; \ U_{char~a} \ and \ U_{char~b} \ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; <math>u_{bb} = bottle$ to bottle homogeneity standard uncertainty; $u_{lts} = long$ term stability standard uncertainty (storage); $u_{sts} = short$ term stability standard uncertainty (transportation).

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty U_{chara} .

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char\ a}^2 + u_{bb}^2 + u_{its}^2 + u_{sts}^2)^{\frac{1}{2}}$

 $U_{\text{char a}}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{lb} = bottle to bottle homogeneity standard uncertainty; u_{lts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 - USA inoragnicventures.com

CERTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

国的阿尔里曼

Feb. 01, 2015

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

DESCRIPTION OF CRM 2.0

1000 µg/mL Nickel in 2% (v/v) HNO3

Catalog Number:

CGNI1-1, CGNI1-2, and CGNI1-5

Lot Number:

G2-NI02086

Starting Material:

Ni pieces

Starting Material Purity (%):

99.9998

Starting Material Lot No:

1559

Matrix:

2% (v/v) HNO3

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration:

1,002 ± 4 µg/mL -weighted mean-

Certified Density:

1.011 g/mL (measured at $20 \pm 1^{\circ}$ C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = \text{mean}$ $x_i = \text{ind}^{i_{i+1}}$ x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^{$\frac{1}{4}$}

2 = the coverage factor.

 $\left[\sum(s_i)^2\right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where's stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

1,001 ± 3 µg/mL

ICP Assay NIST SRM 3136 Lot Number: 000612

Assay Method #2

1,002 ± 3 µg/mL

EDTA NIST SRM 928 Lot Number: 928

300 Technology-Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

Feb. 01, 2015

fax: 540,585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 µg/mL Lead in 0.5%(v/v) HNO3

Catalog Number:

CGPB1-1, CGPB1-2, and CGPB1-5

Lot Number:

G2-PB03044

Starting Material:

Pb(NO3)2

Starting Material Purity (%):

99.9998

Starting Material Lot No:

1717

Matrix:

0.5%(v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 3 µg/mL -weighted mean-

Certified Density:

1.002 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM} , where two methods of characterization are used, is the weighted mean of the two results = [(w_a) (X_a) + (w_b) (X_b)]

Xa is the mean of Assay Method A with standard uncertainty Uchara.

X_b is the mean of Assay Method B with standard uncertainty U_{char b}.

 \mathbf{w}_a and \mathbf{w}_b = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char\ a})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2));$

 $w_b = (1/U_{char\,b})^2 \, / \, ((1/U_{char\,a})^2 + (1/U_{char\,b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2)^{1/2}$

 $\begin{array}{l} U_{char\ a\&b} = [(w_a)^2\,(U_{char\ a})^2 + (w_b)^2\,(U_{char\ b})^2]^{0.5}\,;\ U_{char\ a} \ \mbox{and}\ \ U_{char\ b} \ \mbox{are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; <math>u_{bb} = \mbox{bottle to bottle homogeneity standard uncertainty;} \\ u_{its} = \mbox{long term stability standard uncertainty (storage);} \ u_{sts} = \mbox{short term stability standard uncertainty (transportation).} \end{array}$

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty $U_{char\ a}$.

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char\ a}^2 + u_{bb}^2 + u_{its}^2 + u_{sts}^2)^{\frac{1}{2}}$

 $U_{\text{char a}}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{Its} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Feb. 01, 2015

2.0 DESCRIPTION OF CRM 1000 µg/mL Antimony in 1% (v/v) HNO3 / 3% Tartaric Acid

Catalog Number:

CGSB1-1, CGSB1-2 and CGSB1-5

Lot Number:

F2-SB03010

Starting Material:

Sb shot

Starting Material Purity (%):

99.9974

Starting Material Lot No:

1647

Matrix:

1% (v/v) HNO3 / 3% Tartaric Acid

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,000 ± 5 µg/mL - weighted mean

Certified Density:

1.021 g/mL (measured at 20 \pm 1°C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}\right]^{2}$ = The square root of the sum of the squares of the most common errors (where's stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

tel: 800.669.6799 • 540.585.3030 fax: 540,585,3012

> EXPERIE! Feb. 01, 2015

into@Inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

DESCRIPTION OF CRM 2.0

1000 µg/mL Scandium in 7% (v/v) HNO3

Catalog Number:

CGSC1-1, CGSC1-2, and CGSC1-5

Lot Number:

G2-SC02111

Starting Material:

Sc2O3

Starting Material Purity (%):

99.9917

Starting Material Lot No:

1745

Matrix:

7% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,002 ± 6 µg/mL -weighted mean-

Certified Density:

1.041 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the 1.0 Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Feb. 01, 2015

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Selenium(+4) in 2% (v/v) HNO3

Catalog Number:

CGSE(4)1-1, CGSE(4)1-2, and CGSE(4)1-5

Lot Number:

E2-SE02033

Starting Material:

Se shot

Starting Material Purity (%):

Starting Material Lot No:

99.9996 1616

Matrix:

2% (v/v) HNO3

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:

1,001 ± 6 µg/mL - weighted mean

Certified Density:

1.011 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \underline{\sum x_i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = $\frac{2 [(\Sigma s_i)^2]^{2}}{(n)^{\frac{1}{2}}}$

 Σs_i = The summation of all significant estimated errors

(Most common are the errors from instrumental measurement, weighing, dilution to volume and the fixed error reported on the

NIST SRM certificate of analysis)

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

· "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

· This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1

Assay Method #1

1,002 ± 4 µg/mL

ICP Assay NIST SRM 3149 Lot Number: 100901

Assav Method #2

1,000 ± 3 µg/mL

Calculated NIST SRM Lot Number: See Sec. 4.2

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

tel: 800,669.6799 • 540.585.3030

fax: 540,585,3012

info@inorganicventures.com

運用到限信

Feb. 01, 2015

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 µg/mL Silica in 1% (v/v) HNO3 / tr. HF

Catalog Number:

CGSIO1-1, CGSIO1-2, and CGSIO1-5

Lot Number:

F2-SI03020

Starting Material:

SiO2

Starting Material Purity (%):

99.9993

Starting Material Lot No:

1551

Matrix:

1% (v/v) HNO3 / tr. HF

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1,002 \pm 5 \mu g/mL$ - weighted mean

Certified Density:

1.006 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{n} x_{i}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\left[\left[\Sigma(s_i)^2 \right]^{2^2} \right]^{2^2}$ = The square root of the sum of the squares of the most common errors (where stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1 Assay Method #1

 $1,001 \pm 3 \mu g/mL$

ICP Assay NIST SRM 3150 Lot Number: 071204

Assay Method #2

 $1,002 \pm 3 \mu g/mL$

Calculated NIST SRM Lot Number: See Sec. 4.2

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

IE) CEMENTE

Feb. 01, 2015

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 µg/mL Tin in tr. HNO3 / tr. HF

Catalog Number:

CGSN1-1, CGSN1-2, and CGSN1-5

Lot Number:

G2-SN02058

Starting Material:

Sn shot

Starting Material Purity (%):

99.9998

Starting Material Lot No:

1744

Matrix:

tr. HNO3 / tr. HF

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 5 µg/mL -weighted mean-

Certified Density:

1.000 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM} , where two methods of characterization are used, is the weighted mean of the two results = $[(w_a) (X_a) + (w_b) (X_b)]$

X_a is the mean of Assay Method A with standard uncertainty U_{char a}.

X_b is the mean of Assay Method B with standard uncertainty U_{char b}.

 \mathbf{w}_{a} and \mathbf{w}_{b} = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char a})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2));$

 $w_b = (1/U_{char \, b})^2 / ((1/U_{char \, a})^2 + (1/U_{char \, b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char\ a8b}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2\right)^{\frac{1}{2}}$

 U_{char} a_{Sb} = $[(W_a)^2(U_{char}a)^2 + (W_b)^2(U_{char}b)^2]^{0.5}$; $U_{char}a$ and $U_{char}b$ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{lts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty U_{chara} .

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char}^2 + u_{bb}^2 + u_{sts}^2)^{\frac{1}{2}}$

 $U_{\text{char}\,a}$ is the square root of the sum of the squares of theerrors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{bb} = bottle to bottle homogeneity standard uncertainty; u_{tts} = long term stability standard uncertainty (storage); u_{sts} = short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

Feb. 01, 2015

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM

1000 µg/mL Strontium in 0.1% (v/v) HNO3

Catalog Number:

CGSR1-1, CGSR1-2, and CGSR1-5

Lot Number:

F2-SR02036

Starting Material:

SrCO3

Starting Material Purity (%):

99.9988

Starting Material Lot No:

1610

Matrix:

0.1% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

 $1,000 \pm 5 \mu g/mL$ - weighted mean

Certified Density:

1.001 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{n} x_{i}$

Î

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left.\Sigma(s_i)^2\right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel; 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

ENPINES.

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 µg/mL Thorium in 5% HNO3(v/v)

Catalog Number:

CGTH1-1, CGTH1-2, and CGTH1-5

Lot Number:

G2-TH01094

Starting Material:

Th(NO3)4x4H2O

Starting Material Purity (%):

99.9934

Starting Material Lot No:

1803

Matrix:

5% HNO3(v/v)

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 4 µg/mL -weighted mean-

Certified Density:

1.026 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_h} where two methods of characterization are used, is the weighted mean of the two results = $[(w_a)(X_a) + (w_b)(X_b)]$

Xa is the mean of Assay Method A with standard uncertainty Uchara.

 X_b is the mean of Assay Method B with standard uncertainty $\,U_{\text{char}\,b}$

 \textbf{w}_a and \textbf{w}_b = The weighting factors for each method calculated using the inverse square of the variance:

$$w_a = (1/U_{char a})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2));$$

$$\mathbf{w}_b = (1/U_{char\ b})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2))$$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char\ a&b}^2 + u_{bb}^2 + u_{lts}^2 + u_{sts}^2\right)^{1/2}$

 $\begin{array}{l} U_{char\ a\&b} = [(w_a)^2\,(U_{char\ a})^2 + (w_b)^2\,(U_{char\ b})^2]^{0.5};\ U_{char\ a}\ and\ U_{char\ b}\ are\ the\ square\ root\ of\ the\ sum\ of\ the\ square\ of\ the\ errors\ from\ characterization\ which\ include\ instrumental\ measurement,\ density,\ NIST\ SRM\ uncertainty,\ weighing,\ and\ volume;\ k,\ coverage\ factor = 2\ in\ all\ cases\ at\ Inorganic\ Ventures;\ u_{bb} =\ bottle\ to\ bottle\ homogeneity\ standard\ uncertainty;\ u_{lts} =\ long\ term\ stability\ standard\ uncertainty\ (storage);\ u_{sts} =\ short\ term\ stability\ standard\ uncertainty\ (transportation). \end{array}$

Certified Value, X_{CRM} , where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty $U_{char\ a}$.

CRM Expanded Uncertainty (±) = U_{CRM} = k ($U_{char\ a}^2$ + u_{bb}^2 + u_{its}^2 + u_{sts}^2) 1/2

 $U_{char\,a}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; $u_{bb} = bottle$ to bottle homogeneity standard uncertainty; $u_{its} = long$ term stability standard uncertainty (storage); $u_{sts} = short$ term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 • USA inorganicventures.com

tel: 800.669.6799 • 540.585.3030 fax: 540.585.3012 info@inorganioventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

EXCENDED

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 µg/mL Titanium in 2% (v/v) HNO3 / tr. HF

Catalog Number:

CGTI1-1, CGTI1-2, and CGTI1-5

Lot Number:

F2-TI02094

Starting Material:

Ti powder

Starting Material Purity (%):

99.9948

Starting Material Lot No:

1769

Matrix:

2% (v/v) HNO3 / tr. HF

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 6 µg/mL - weighted mean

Certified Density:

1.011 g/mL (measured at 20 ± 1 °C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

 x_i = individual results

n = number of measurements

Uncertainty (±) = 2 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\left.\Sigma(s_i)^2\right]^{\nu_2}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 - USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

CERTIFICATE OF ANALYSIS

Feb. 01, 2015

2.0 **DESCRIPTION OF CRM** 1000 µg/mL Thallium in 0.7% (v/v) HNO3

Catalog Number:

CGTL1-1, CGTL1-2, and CGTL1-5

Lot Number:

F2-TL02003

Starting Material:

TINO3

Starting Material Purity (%):

99,9996

Starting Material Lot No:

1576

Matrix:

0.7% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,001 ± 5 µg/mL - weighted mean

Certified Density:

1.003 g/mL (measured at 20 ± 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{\infty}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com QC LTANIUM STD 1K PPM IN
140115AM

tel: 800,669,6799 - 540,585,3030

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

重和利用經濟

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 µg/mL Uranium in 2% (v/v) HNO3

Catalog Number:

CGU1-1, CGU1-2, and CGU1-5

Lot Number:

F2-U01098

Starting Material:

UO2(NO3)2.6H2O

Starting Material Purity (%):

99.9979

Starting Material Lot No:

1627

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,003 ± 6 µg/mL - weighted mean

Certified Density:

1.010 g/mL (measured at 20 ± 1 °C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left.\Sigma(s_i)^2\right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

Certified Abundance: The 235U in this standard is depleted. The Certified abundances in Atom % are as follows:

IV's Certified Abundance

<u>Isotope</u>

Atom%

Uranium 238U 235U 99.6 ± 0.1

2

 0.42 ± 0.05

QC VANADIUM STD 1K PPM1.

140115AN

tel: 800.669.6799 - 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 - USA Inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

EXPONENTS:

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 µg/mL Vanadium in 2% (v/v) HNO3

Catalog Number:

CGV1-1, CGV1-2, and CGV1-5

Lot Number:

G2-V02081

Starting Material:

V205

Starting Material Purity (%):

99.9991

Starting Material Lot No:

1782

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

1,000 ± 5 µg/mL -weighted mean-

Certified Density:

1.016 g/mL (measured at 20 ± 1 °C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_1} where two methods of characterization are used, is the weighted mean of the two results = [$\{w_a\}$ (X_a) + (w_b) (X_b)]

X_a is the mean of Assay Method A with standard uncertainty U_{char a}.

X_b is the mean of Assay Method B with standard uncertainty U_{char b}

 \mathbf{w}_a and \mathbf{w}_b = The weighting factors for each method calculated using the inverse square of the variance:

 $W_a = (1/U_{char a})^2 / ((1/U_{char a})^2 + (1/U_{char b})^2));$

 $w_b = (1/U_{charb})^2 / ((1/U_{chara})^2 + (1/U_{charb})^2))$

CRM Expanded Uncertainty (±) = U_{CRM} = k (U²_{char a&b} + u²_{bb} + u²_{tts} + u²_{sts}) ^{1/2}

 $U_{char} = (W_b)^2 (U_{char} =)^2 + (W_b)^2 (U_{char} =)^2]^{0.5}$; $U_{char} = and$ $U_{char} = b$ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighting, and volume; k, coverage factor = 2 in all cases at inorganic Ventures; $u_{bb} = bottle$ to bottle homogeneity standard uncertainty; $U_{lbs} = long$ term stability standard uncertainty (storage); $U_{lbs} = long$ term stability standard uncertainty (transportation).

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty $U_{\text{char}\,a}$.

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char a}^2 + u_{bb}^2 + u_{tis}^2 + u_{sts}^2)^{3/2}$

 $U_{\text{char}\ a}$ is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; u_{ob} = bottle to bottle homogeneity standard uncertainty; u_{lb} = long term stability standard uncertainty (storage); u_{sta} = short term stability standard uncertainty (transportation).

1.0

CERTIFICATE OF ANALYSIS

ZINC STD, 1,000PPM, 20 o NITRA

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

Christiansburg, VA 24073 · USA inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

EXEMPLES

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

1000 μg/mL Zinc in 2% (v/v) HNO3

Catalog Number:

CGZN1-1, CGZN1-2, and CGZN1-5

Lot Number:

F2-ZN02088

Starting Material:

Zn shot

Starting Material Purity (%):

99.9999

Starting Material Lot No:

1689

Matrix:

2% (v/v) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:

998 ± 5 µg/mL -weighted mean-

Certified Density:

1.011 g/mL (measured at 20 \pm 1°C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence interval using a coverage factor of k = 2.

Characterization of CRM by two independent methods

Characterization of CRM by one method

Certified Value, X_{CRM_1} where two methods of characterization are used, is the weighted mean of the two results = $[(w_a)(X_a) + (w_b)(X_b)]$

Xa is the mean of Assay Method A with standard uncertainty Uchara.

 X_b is the mean of Assay Method B with standard uncertainty $U_{char\,b}$.

 \mathbf{w}_a and \mathbf{w}_b = The weighting factors for each method calculated using the inverse square of the variance:

 $w_a = (1/U_{char\ a})^2 / ((1/U_{char\ a})^2 + (1/U_{char\ b})^2));$

 $W_b = (1/U_{char \, b})^2 / ((1/U_{char \, a})^2 + (1/U_{char \, b})^2))$

CRM Expanded Uncertainty (±) = $U_{CRM} = k \left(U_{char\ a\&b}^2 + u_{bb}^2 + u_{its}^2 + u_{sts}^2\right)^{\frac{1}{2}}$

 U_{char} $_{a\&b} = [(w_a)^2 (U_{\text{char}})^2 + (w_b)^2 (U_{\text{char}}b)^2]^{0.5}$; U_{char} $_a$ and U_{char} $_b$ are the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; $u_{bb} = bottle$ to bottle homogeneity standard uncertainty; $u_{lts} = long$ term stability standard uncertainty (storage); $u_{sts} = short$ term stability standard uncertainty (transportation).

Certified Value, X_{CRM}, where one method of characterization is used, is the mean of individual results:

 X_a = Mean X_a is the mean of Assay Method A with standard uncertainty $U_{char\ a}$.

CRM Expanded Uncertainty (±) = $U_{CRM} = k (U_{char}^2 + u_{bb}^2 + u_{ts}^2 + u_{sts}^2)^{1/2}$

 $U_{\rm char}$ a is the square root of the sum of the squares of the errors from characterization which include instrumental measurement, density, NIST SRM uncertainty, weighing, and volume; k, coverage factor = 2 in all cases at Inorganic Ventures; $u_{\rm bb}$ = bottle to bottle homogeneity standard uncertainty; $u_{\rm its}$ = long term stability standard uncertainty (storage); $u_{\rm sta}$ = short term stability standard uncertainty (transportation).

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

Stock Solution

Catalog No.:

2007ICS-1

Lot Number:

F2-MEB415153

Matrix:

2% HNO3(v/v),

0.3% HF(v/v)

1,000 µg/mL ea:

Ti,

500 μg/mL ea:

В,

300 µg/mL ea:

Mo.

230 μg/mL ea:

Si

3.0 CERTIFIED VALUES AND UNCERTAINTIES

1.014

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Boron, B	500.0 ± 3.4 μg/mL	Molybdenum, Mo	300.0 ± 1.7 μg/mL	Silicon, Si	230.0 ± 1.1 μg/mL
Titanium, Ti	1,000 ± 7 μg/mL				

Certified Density:

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\bar{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left[\Sigma(s_i)^2 \right]^{\frac{1}{2}} \right]$ = The square root of the sum of the squares of the most common errors (where s' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the 1.0 Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM**

Stock Solution

Catalog No.:

2007ICS-3

Lot Number:

G2-MEB477055

Matrix:

7% HNO3(v/v)

Feb. 01, 2015

20,000 µg/mL ea:

1,000 µg/mL ea:

As,

TI,

Cd.

500 µg/mL ea:

Se,

300 µg/mL ea:

Αg,

Ва,

Pb,

Co,

Cr3,

Cu,

Ni,

V.

Zn.

200 µg/mL ea:

Mn,

100 μg/mL ea:

Вe

CERTIFIED VALUES AND UNCERTAINTIES 3.0

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Arsenic, As	1,000 ± 7 μg/mL	Barium, Ba	~ 300.0 ± 2.0 μg/mL	Beryllium, Be	100.0 ± 0.6 μg/mL
Cadmium, Cd	300.0 ± 1.9 μg/mL	Chromium+3, Cr3	300.0 ± 1.9 μg/mL	Cobalt, Co	300.0 ± 2.0 μg/mL
Copper, Cu	300.0 ± 2.0 μg/mL	Lead, Pb	1,000 ± 7 μg/mL	Manganese, Mn	200.0 ± 1.3 μg/mL
Nickel, Ni	300.0 ± 2.0 μg/mL	Potassium, K	20,000.0 ± 90.0 μg/mL	Selenium, Se	500.0 ± 3.3 μg/mL
Silver, Ag	300.0 ± 1.9 μg/mL	Thallium, Tl	1,000 ± 7 μg/mL	Vanadium, V	300.0 ± 2.0 μg/mL
Zinc, Zn	300.0 ± 2.0 μg/mL				
				i	

Certified Density:

1.090 g/mL (measured at 20 \pm 1° C)

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

CERTIFICATE OF ANALYS

2.0 DESCRIPTION OF CRM

Stock Solution

Catalog No.:

2007ICS-4

Lot Number:

F2-MEB423125

Matrix:

3% HNO3(v/v)

Feb. 01, 2015

15,000 µg/mL ea:

Ca,

12,500 µg/mL ea:

Fe,

7,500 µg/mL ea:

Mg,

3,000 µg/mL ea:

Αl,

2,500 µg/mL ea:

Na

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT

CERTIFIED VALUE

ELEMENT

CERTIFIED VALUE

ELEMENT

CERTIFIED VALUE

Aluminum, Al

3,012 ± 19 µg/mL

Calcium, Ca

15,060.0 ± 100.0 µg/mL

_ Iron, Fe

12,550.0 ± 80.0 µg/mL

Magnesium, Mg

7,530.0 ± 50.0 µg/mL

Sodium, Na

2,510 ± 17 μg/mL

Certified Density:

1.179

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{n} x_i$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left[\sum (s_i)^2 \right]^{\frac{1}{2}} \right]$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

tel: 800.669.6799 - 540.585.3030

tax: 540.585.3012

info@inorganicventures.com

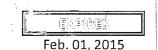
300 Technology Drive Christiansburg, VA 24073 - USA inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration 1.0 Laboratories.'

2.0 **DESCRIPTION OF CRM**

Stock Solution

Catalog No.:


6020ICS-0A

Lot Number:

G2-MEB476152MCA

Matrix:

1.4% HNO3(v/v)

10,000 μg/mL ea:

Chloride,

2,000 µg/mL ea:

1,000 µg/mL ea:

Ca,

S.

20 µg/mL ea:

Mo.

Τi

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Aluminum, Al	1,002 ± 6 μg/mL	Calcium, Ca	1,002 ± 6 μg/mL	Carbon, C	2,004 ± 13 μg/mL
Chloride, Chloride	10,020.0 ± 50.0 μg/mL	Iron, Fe	1,002 ± 7 μg/mL	Magnesium, Mg	1,002 ± 4 μg/mL
Molybdenum, Mo	20.04 ± 0.14 μg/mL	Phosphorus, P	1,002 ± 7 μg/mL	Potassium, K	1,002 ± 4 μg/mL
Sodium, Na	1,002 ± 7 μg/mL	Sulfur, S	1,002 ± 5 μg/mL	Titanium, Ti	20.04 ± 0.13 μg/mL
				1	

Certified Density:

1.034 g/mL (measured at 20 \pm 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x_i}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\sum_{i=1}^{\infty}(s_i)^2\right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

CERTIFICATE OF ANALYS

6020ICS-0B

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

高河州湾

Feb. 01, 2015

DESCRIPTION OF CRM 2.0

Stock Solution

Catalog No .:

6020ICS-0B

Lot Number:

G2-MEB463151

Matrix:

3% HNO3(v/v)

2 µg/mL ea:

Ag,

As,

Cd.

Co,

Cr3.

Cu.

Mn.

Zn

CERTIFIED VALUES AND UNCERTAINTIES 3.0

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Arsenic, As	2.000 ± 0.013 μg/mL	Cadmium, Cd	2.000 ± 0.013 μg/mL	Chromium+3, Cr3	$2.000 \pm 0.013 \mu g/mL$
Cobalt, Co	2.000 ± 0.013 μg/mL	Copper, Cu	$2.000 \pm 0.013 \ \mu g/mL$	Manganese, Mn	$2.000 \pm 0.013 \mu g/mL$
Nickel, Ni	2.000 ± 0.013 µg/mL	Silver, Ag	2.000 ± 0.013 μg/mL	Zinc, Zn	2.000 ± 0.013 μg/mL

Certified Density:

1.012 g/mL (measured at 20 \pm 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left(\Sigma(s_i)^2\right)^{\frac{1}{2}}\right]$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- · This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

EPA REF MAT WATER SPK SO

tel: 800.669.6799 · 540.585.3030 fax: 540.585,3012

info@inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the 1.0 Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

ESCOME ES

Feb. 01, 2015

2.0 **DESCRIPTION OF CRM**

Stock Solution

Catalog No.:

6020SPK-W

Lot Number:

G2-MEB474101

Matrix:

7% HNO3(v/v)

100 μg/mL ea:

Fe,

50 µg/mL ea:

Ва,

Zn,

20 μg/mL ea: Co,

Cr3,

Pb,

Cu,

Sb,

V.

10 μg/mL ea:

As,

5 µg/mL ea:

Ag,

Вe,

Cd,

Se,

Mn,

TI

Νi,

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Antimony, Sb	19.99 ± 0.14 μg/mL	Arsenic, As	9.99 ± 0.07 μg/mL	Barium, Ba	50.02 ± 0.33 μg/mL
Beryllium, Be	4.997 ± 0.029 μg/mL	Cadmium, Cd	4.995 ± 0.033 μg/mL	Chromium+3, Cr3	$20.00 \pm 0.13 \ \mu g/mL$
Cobalt, Co	19.99 ± 0.13 µg/mL	Copper, Cu	19.99 ± 0.13 μg/mL	Iron, Fe	100.0 ± 0.6 μg/mL
Lead, Pb	10.00 ± 0.07 μg/mL	Manganese, Mn	19.99 ± 0.13 μg/mL	Nickel, Ni	20.02 ± 0.13 μg/mL
Selenium, Se	4.999 ± 0.034 μg/mL	Silver, Ag	5.002 ± 0.032 μg/mL	Thallium, TI	5.000 ± 0.033 μg/mL
Vanadium, V	20.00 ± 0.13 μg/mL	Zinc, Zn	50.00 ± 0.33 μg/mL		,

Certified Density:

1.035 g/mL (measured at 20 \pm 1° C)

CERTIFICATE OF ANALYS

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures,com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM**

Stock Solution

Catalog No.:

6020SPK-W

Lot Number:

G2-MEB474101

Matrix:

7% HNO3(v/v)

EMPHRIES Feb. 01, 2015

100 μg/mL ea:

Fe,

50 µg/mL ea:

Ва,

Zn,

20 µg/mL ea: Co,

Cr3,

Cu,

Mn,

Sb.

V.

10 µg/mL ea:

Pb, As,

5 µg/mL ea:

Ag,

Be,

Cd,

Se,

ΤI

Ni.

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Antimony, Sb	19.99 ± 0.14 μg/mL	Arsenic, As	9.99 ± 0.07 μg/mL	Barium, Ba	$50.02 \pm 0.33 \mu g/mL$
Beryllium, Be	4.997 ± 0.029 μg/mL	Cadmium, Cd	4.995 ± 0.033 μg/mL	Chromium+3, Cr3	20.00 ± 0.13 μg/mL
Cobalt, Co	19.99 ± 0.13 μg/mL	Copper, Cu	19.99 ± 0.13 μg/mL	Iron, Fe	100.0 \pm 0.6 $\mu g/mL$
Lead, Pb	10.00 ± 0.07 μg/mL	Manganese, Mn	19.99 ± 0.13 μg/mL	Nickel, Ni	20.02 ± 0.13 μg/mL
Selenium, Se	4.999 ± 0.034 μg/mL	Silver, Ag	5.002 ± 0.032 μg/mL	Thallium, Tl	5.000 ± 0.033 μg/mL
Vanadium, V	20.00 ± 0.13 μg/mL	Zìnc, Zn	50.00 ± 0.33 μg/mL		

Certified Density:

1.035 g/mL (measured at 20 \pm 1° C)

inorganicventures.com

CERTIFICATE OF ANAL

QCP-QCS-1, 5% NITRIC Christiansburg, VA 24073 - USA

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the 1.0 Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Feb. 01, 2015

2.0 **DESCRIPTION OF CRM** **Stock Second Source Solution**

Catalog No.:

QCP-QCS-1

Lot Number:

G2-MEB483134

Matrix:

5% HNO3(v/v)

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

500 μg/mL ea:

K,

TI,

200 µg/mL ea:

As,

Pb,

Ва,

100 μg/mL ea:

Αl, В,

Li,

Be, Mg. Cd,

Na,

Ca,

Mn,

Ce, Ni,

Co, Se,

Cr3, Sr,

Cu, ٧,

Fe, Zn,

Ρ,

25 μg/mL ea:

Αg

CERTIFIED VALUES AND UNCERTAINTIES 3.0

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Aluminum, Al	100.0 ± 0.6 μg/mL	Arsenic, As	199.9 ± 1.3 μg/mL	Barium, Ba	$100.0 \pm 0.7 \mu \text{g/mL}$
Beryllium, Be	$100.0\pm0.7~\mu g/mL$	Boron, B	100.0 ± 0.7 μg/mL	Cadmium, Cd	100.0 ± 0.7 μg/mL
Calcium, Ca	100.0 ± 0.6 μg/mL	Cerium, Ce	100.0 ± 0.7 μg/mL	Chromium+3, Cr3	100.0 ± 0.7 μg/mL
Cobalt, Co	100.0 ± 0.6 µg/mL	Copper, Cu	100.0 ± 0.7 μg/mL	Iron, Fe	$100.0 \pm 0.7 \; \mu g/mL$
Lead, Pb	199.9 ± 1.5 μg/mL	Lithium, Li	100.0 ± 0.7 μg/mL	Magnesium, Mg	$100.0 \pm 0.7 \ \mu g/mL$
Manganese, Mn	100.0 ± 0.6 μg/mL	Mercury, Hg	199.9 ± 1.4 μg/mL	Nickel, Ni	100.0 ± 0.7 μg/mL
Phosphorus, P	499.8 ± 3.4 μg/mL	Potassium, K	499.8 ± 3.3 μg/mL	Selenium, Se	$100.0 \pm 0.7 \mu \text{g/mL}$
Silver, Ag	25.00 ± 0.16 μg/mL	Sodium, Na	100.0 ± 0.7 μg/mL	Strontium, Sr	$100.0 \pm 0.7 \mu g/mL$
Thallium, TI	499.8 ± 3.3 μg/mL	Vanadium, V	100.0 ± 0.5 μg/mL	Zinc, Zn	100.0 ± 0.6 μg/mL

Certified Density:

1.039 g/mL (measured at 20 \pm 1° C)

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Feb. 01, 2015

2.0 **DESCRIPTION OF CRM** **Stock Second Source Solution**

Catalog No.:

QCP-QCS-2

Lot Number:

G2-MEB479071

Matrix:

5% HNO3(v/v),

tr. HF

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

500 μg/mL ea:

SiO2,

Sn,

200 µg/mL ea:

Sb,

100 μg/mL ea:

Mo,

Τi

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Antimony, Sb	200.0 ± 1.6 μg/mL	Molybdenum, Mo	100.0 ± 0.6 μg/mL	Silica, SiO2	500.0 ± 3.3 μg/mL
Tin, Sn	500.0 ± 3.2 μg/mL	Titanium, Ti	100.0 ± 0.7 μg/mL	1,	

Certified Density:

1.027

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^{1/2}

2 = the coverage factor.

 $\left[\left[\left[\Sigma(s_i)^2 \right]^{\frac{1}{2}} \right]$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

300 Technology Drive -Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the 1.0 Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

ENDINESS Feb. 01, 2015

CERTIFICATE OF ANALYS

2.0 **DESCRIPTION OF CRM** **Stock Second Source Solution**

Catalog No.:

QCP-QCS-3

Lot Number:

G2-MEB479072

Matrix:

7% HNO3(v/v)

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

50 µg/mL ea:

Se,

10 μg/mL ea:

Ag, Ва, Be, Ca, Cd, Cr3, ΑI, As, K, Mo, Na, Ni, Pb, Cu, Fe, Mg, Mn, Sb, Th, TI. U, V, Zn

CERTIFIED VALUES AND UNCERTAINTIES 3.0

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Aluminum, Al	10.01 ± 0.07 μg/ml	Antimony, Sb	10.01 ± 0.08 μg/mL	Arsenic, As	10.02 ± 0.07 μg/mL
Barium, Ba	10.01 ± 0.07 μg/mL	Beryllium, Be	10.00 ± 0.07 μg/mL	Cadmium, Cd	10.01 ± 0.07 µg/mL
Calcium, Ca	10.01 ± 0.06 μg/mL	Chromium+3, Cr3	10.00 ± 0.07 μg/mL	Cobalt, Co	10.01 ± 0.06 µg/mL
Copper, Cu	10.01 ± 0.07 μg/mL	Iron, Fe	10.02 ± 0.07 μg/mL	Lead, Pb	10.02 ± 0.08 μg/mL
Magnesium, Mg	10.01 ± 0.07 μg/mL	Manganese, Mn	10.02 ± 0.06 μg/mL	Molybdenum, Mo	10.02 ± 0.06 μg/mL
Nickel, Ni	10.01 \pm 0.07 μ g/mL	Potassium, K	10.01 ± 0.07 μg/mL	Selenium, Se	50.05 ± 0.37 μg/mL
Silver, Ag	10.02 ± 0.06 μg/mL	Sodium, Na	10.01 ± 0.07 μg/mL	Thallium, TI	10.01 ± 0.06 μg/mL
Thorium, Th	10.01 ± 0.07 μg/mL	Uranium, U	10.02 ± 0.06 μg/mL	Vanadium, V	10.01 ± 0.05 µg/mL
Zinc, Zn	10.01 ± 0.06 μg/mL				

Certified Density:

1.036 g/mL (measured at 20 \pm 1° C)

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

PERMINERS.

Feb. 01, 2015

fax: 540,585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025

"General Requirements for the Competence of Testing and Calibration Laboratories."

DESCRIPTION OF CRM 2.0

manufacturing facility.

Custom Second Source Solution

Catalog No .:

QCP-QCS-4

Lot Number:

G2-MEB463148

Matrix:

7% HNO3(v/v)

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our

5 μg/mL ea:

Hg

CERTIFIED VALUES AND UNCERTAINTIES 3.0

ELEMENT

CERTIFIED VALUE

ELEMENT

CERTIFIED VALUE

ELEMENT

CERTIFIED VALUE

Mercury, Hg

5.001 ± 0.023 µg/mL

Certified Density:

1.034

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \underline{\sum x_i}$ $(\overline{x}) = \text{mean}$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 $\left[\Sigma(s_i)^2 \right]^{\frac{1}{2}}$

2 = the coverage factor.

 $\left[\left(\Sigma(s_i)^2\right]^{\frac{1}{2}}\right]$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

TRACEBILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS 4.0

- · "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)
- This product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.
- The Calculated Value is a value calculated from the weight of a starting material that has been certified directly vs. a NIST SRM/RM. See section 4.2 for balance traceability.

CERTIFICATE OF ANALYSIS

tel: 800.669.6799 - 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

TEXTENS TEST

Feb. 01, 2015

2.0 DESCRIPTION OF CRM

Stock Second Source Custom Solution

Catalog No.:

QCP-QCS-5

Lot Number:

G2-MEB474014

Matrix:

H2O

Second Source: Whenever possible, this solution was manufactured from a second set of concentrates in our manufacturing facility.

75 µg/mL ea:

Sulfate,

50 μg/mL ea:

Bromide,

25 μg/mL ea:

oPhosphate_a

s_P,

15 μg/mL ea:

Chloride,

Nitrite_as_N,

10 μg/mL ea:

Fluoride,

Nitrate as N

Certified Density:

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT

CERTIFIED VALUE

ELEMENT

CERTIFIED VALUE

ELEMENT

CERTIFIED VALUE

Bromide, Bromide

50.00 ± 0.31 μg/mL

Chloride, Chloride

 $15.00 \pm 0.09 \, \mu g/mL$

Fluoride, Fluoride

10.00 ± 0.05 μg/mL

Nitrate_as_N, Nitrate_as_N

10.00 ± 0.05 μg/mL

Nitrite_ as_ N, Nitrite_as_N

15.00 ± 0.07 µg/mL

o-Phosphate as P, oPhosphate_25.08 ± 0.20 μg/mL

Sulfate, Sulfate

75.0 ± 0.4 μg/mL

0.999

g/mL (measured at 20 ± 1° C)

CERTIFICATE OF ANALYSIS

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012 info@inorganicventures.com

INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the 1.0 Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIP	TION OF CRM	Stock Solution
-------------	-------------	----------------

Mg,

Catalog No .:

WW-LFS-1

Se,

Co,

Lot Number:

F2-MEB419068

Matrix:

5% HNO3(v/v)

医结合原性虫 Feb. 01, 2015

1,000 µg/mL ea:

K,

600 µg/mL ea:

Ρ,

300 µg/mL ea:

Fe, Na,

200 µg/mL ea:

ΑI, Ce,

100 μg/mL ea:

Ca, Pb,

80 µg/mL ea:

As,

70 μg/mL ea:

Hg,

50 μg/mL ea:

Ni,

40 µg/mL ea:

Cr3,

30 µg/mL ea:

Ag

3.0

Cu,

20 µg/mL ea:

Ва,

7.5 µg/mL ea:

Be,

Cd.

Li,

TI,

Mn,

Sr,

Zn,

CERTIFIED VALUES AND UNCERTAINTIES

ELEMEN	T CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Aluminun	AI 200.0 ± 1.4 μg/ml	Arsenic, As	80.0 ± 0.5 μg/mL	Barium, Ba	20.00 ± 0.13 μg/mL
Beryllium	Be 20.00 ± 0.14 μg/ml	Boron, B	30.00 ± 0.20 μg/mL	Cadmium, Cd	20.01 ± 0.13 μg/mL
Calcium,	a 100.0 ± 0.7 μg/ml	. Cerium, Ce	200.0 ± 1.3 μg/mL	Chromium+3, Cr3	40.01 ± 0.28 μg/mL
Cobalt, C	20.01 ± 0.13 μg/ml	. Copper, Cu	30.00 ± 0.21 μg/mL	Iron, Fe	300.1 ± 2.0 μg/mL
Lead, Pb	100.0 ± 0.8 μg/ml	Lithium, Li	20.00 ± 0.14 μg/mL	Magnesium, Mg	200.0 ± 1.3 μg/mL

CERTIFICATE OF ANALYSIS

tel: 800.669.6799 · 540.585.3030 fax: 540.585.3012

info@inorganicventures.com

300 Technology Drive Christiansburg, VA 24073 - USA inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 DESCRIPTION OF CRM Stock Solution

Mg,

Catalog No.:

WW-LFS-1

Se,

Lot Number:

F2-MEB419068

Matrix:

5% HNO3(v/v)

ΤI,

Feb. 01, 2015

1,000 µg/mL ea:

K,

600 μg/mL ea:

P,

300 μg/mL ea:

Fe, Na,

200 μg/mL ea:

Al, Ce,

100 μg/mL ea:

Ca,

Рb,

80 μg/mL ea:

As,

70 μg/mL ea:

Hg,

50 μg/mL ea:

Ni,

40 μg/mL ea:

Cr3.

30 µg/mL ea:

Ω.

Cu, V,

20 μg/mL ea:

Ba,

Be,

Cd,

Co, Li,

Mn,

Sr,

Zn,

7.5 µg/mL ea:

Αg

3.0 CERTIFIED VALUES AND UNCERTAINTIES

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Aluminum, Al	200.0 ± 1.4 μg/mL	Arsenic, As	80.0 ± 0.5 μg/mL	Barium, Ba	20.00 ± 0.13 μg/mL
Beryllium, Be	20.00 ± 0.14 μg/mL	Boron, B	30.00 ± 0.20 μg/mL	Cadmium, Cd	20.01 ± 0.13 μg/mL
Calcium, Ca	100.0 ± 0.7 μg/mL	Cerium, Ce	200.0 ± 1.3 μg/mL	Chromium+3, Cr3	40.01 ± 0.28 μg/mL
Cobalt, Co	20.01 ± 0.13 μg/mL	Copper, Cu	30.00 ± 0.21 μg/mL	Iron, Fe	300.1 ± 2.0 μg/mL
Lead, Pb	100.0 ± 0.8 μg/mL	Lithium, Li	20.00 ± 0.14 μg/mL	Magnesium, Mg	200.0 ± 1.3 μg/mL

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

Feb. 01, 2015

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

2.0 **DESCRIPTION OF CRM**

Stock Solution

Catalog No.:

WW-LFS-2

Lot Number:

F2-MEB420050

Matrix:

5% HNO3(v/v),

tr. HF

200 μg/mL ea:

SiO2,

80 µg/mL ea:

Sb,

70 µg/mL ea:

Sn,

40 µg/mL ea:

Mo.

20 µg/mL ea:

Ti

3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Antimony, Sb	80.0 ± 0.6 μg/mL	Molybdenum, Mo	40.01 ± 0.22 μg/mL	Silica, SiO2	200.0 ± 0.9 μg/mL
Tin, Sn	70.0 ± 0.5 μg/mL	Titanium, Ti	20.01 ± 0.13 μg/mL		

Certified Density:

1.025 g/mL (measured at 20 \pm 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \frac{\sum x}{n}i$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^½

2 = the coverage factor.

 $\left[\left[\sum (s_i)^2 \right]^{\gamma_2} = \text{The square root of the sum of the squares of the most} \right]$ common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

300 Technology Drive Christiansburg, VA 24073 · USA inorganicventures.com

tel: 800.669.6799 · 540.585.3030

fax: 540.585.3012

info@inorganicventures.com

1.0 INORGANIC VENTURES is an ISO Guide 34 "General Requirements for the Competence of Reference Material Producers" and ISO 9001 registered manufacturer. Our manufacturing laboratory is accredited to ISO/IEC 17025 "General Requirements for the Competence of Testing and Calibration Laboratories."

Feb. 01, 2015

2.0 **DESCRIPTION OF CRM**

Stock Solution

Catalog No.:

WW-LFS-2

Lot Number:

F2-MEB420050

Matrix:

5% HNO3(v/v).

tr. HF

200 µg/mL ea:

SiO2.

80 µg/mL ea:

Sb,

70 µg/mL ea:

Sn,

40 µg/mL ea:

Mο,

20 µg/mL ea:

Τi

CERTIFIED VALUES AND UNCERTAINTIES 3.0

0.0 0 =			-		
ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE	ELEMENT	CERTIFIED VALUE
Antimony, Sb	80.0 ± 0.6 µg/mL	Molybdenum, Mo	40.01 ± 0.22 μg/mL	Silica, SiO2	200.0 ± 0.9 μg/mL
Tin, Sn	70.0 ± 0.5 μg/mL	Titanium, Ti	20.01 ± 0.13 μg/mL		

Certified Density:

1.025

g/mL (measured at 20 ± 1° C)

The following equations are used in the calculation of the certified value and the uncertainty. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Certified Value $(\overline{x}) = \sum_{x} x_i$

 $(\bar{x}) = mean$

x_i= individual results

n = number of measurements

Uncertainty (±) = 2 [$\Sigma(s_i)^2$]^{1/2}

2 = the coverage factor.

 $\left[\sum (s_i)^2 \right]^{\frac{1}{2}}$ = The square root of the sum of the squares of the most common errors (where 's' stands for the standard deviation) from instrumental measurement, density, NIST SRM uncertainty, weighing, dilution to volume, homogeneity, long term stability and short term stability.

PERKIN ELMER OPTIMA 4300DV ICP-OE

Project(s): Work Order(s):	Piro- Argenthe 0 C141006	TDF: A - 048 Analyst: 5. Van Overneiren	ſ
Digest / Pre TR / Total (I Data File: X:	Diss. Water / S	Preparation Information // Atrix Batch ID Soil / Other (4/2020 Data Storage 8 - (4/2020/4/203	
	Sta	andard Information	
SCV: (LIMS Prepped: CRQL Stock Prepped: 2 CRQL Daily	k: (LIMS ID: 4020501) 04-2014 By: SV (LIMS ID: 4020502)	Calibration Std. # 2 = ESAT High, LIMS: 4020401 Prepped: /0/29/49 By: SV ICV/CCV: 1:2 of 4020401 (LIMS ID: 4020402) Prepped: /0/3/49 By: SV ICSA: 4020404 Prepped: 2-04-2014 ICSAB: 4020405 Prepped: 2-04-2014	
-		Spike Information Tet / Tet Box Spikes	
	Dissolved Spikes	Tot. / Tot. Rec. Spikes	
•	C141006-62	Sample ID:	
Sample ID:		Sample Vol: 50 mL	
Sample vol:	10 mL		,
QCS-3:	100 uL	WW-LFS1: 500 uL	
Exp: 2-1-2018	5(LIMS ID: 4012234)	Exp: 2-1-2015 (LIMS ID: 4012235)	
Salt Spike:	100uL 1-2014 (LIMS ID: 4020314)	WW-LFS2: 500 uL Exp: 2-1-2015 (LIMS ID: 4012236)	
Frepped 2-04		Exp. 2-1-2013 (LIMS ID. 4012230)	
	·	·	
Replace Neb		ents / Maintenance np tubing? Y N Replace torch or injector? Y / N	
Analytes R	Reported:		
	Ag, Al, As, Ba, Be, B, Ca, Co	d, Co, Cr, Cu, Fe, K, Mg,	
	Mn, Mo, Na, Ni, Pb, Sb, Se,	SiO2, Sr, Ti, Tl, V, Zn	
Sequence ID	: 1412023		
		_	
Lims Entry (D	Date / Init): /2/03/1450		

TLF-06.	02	SOP: QAG	0-04.01	Eff. Date: 11/11/2013						
		ESAT R								
	ICP-OE Data Review Form Analyst / Bench Review – Level I									
LIMS:	C141006		TDF:	A-048						
Matrix:	Water		Analysi	s: Dissolved Metals						
	Method / Instrume			Analytical Batch / Sample Parameters						
Yes No	ICV 95-105%	☑ Yes ☐ No SCV 90-110%	Yes No	Mth. Blk. (MB) / Prep. BLK (PB) ≤ ± PQL						
☐ Yes	ICB ≤ ± PQL	⊠ Yes □ No CRDL 70-130%	Yes No	Blk. Spike (BS) 85-115% / SRM In Control						
Yes No	ICSA Spiked Analyte	es 80% - 120%	Yes No	Laboratory Duplicate Analyzed						
Yes No	ICSA Non-Spiked An	nalytes ≤ ± PQL	Yes No	MS Analyzed Every 10% of Samples 70-130%						
Yes No	ICSAB Spiked Analyt		Yes No	Serial Dilution Analyzed						
Yes No	CCBs ≤ ± PQL	Yes CCVs 90-110%	Yes No	Internal Standards 80-120%						
	- Daniel	Other data quality issues ider ibe any anomaly or deficiency not	ntified	Yes No						
☑ Yes	~ · · · · · · · · · · · · · · · · · · ·	LIMS Electronic								
∐ No ☑ Yes		file is uploaded to the X: drive	Yes No	Instrument data are uploaded into the LIMS						
No Analyst:	All samples and Que	data are present in LIMS	∏ No Date: /=	The analyte list for the sequence is complete						
Allalyst.	-/PT-U	Peer Review of Analyti								
	<u>/. · · · · · · · · · · · · · · · · · · ·</u>		Cal Analy:							
	Method / Instrumer	T Vos	Th Voc	Analytical Batch / Sample Parameters						
I Yes ☐ No ☑ Yes	ICV 95-105%	☐ Yes ☐ No SCV 90-110% ☐ Yes ☐ ORD ☐ 70 4000	☐ Yes☐ No	Mth. Blk. (MB) / Prep. BLK (PB) ≤ ± PQL						
☐ No	ICB≤±PQL	□ No CRDL 70-130%	☐ Yes ☐ No	Blk. Spike (BS) 85-115% / SRM In Control						
☑ Yes ☐ No	ICSA Spiked Analytes	s 80-120%	Yes No	Laboratory Duplicate Analyzed						
Yes No	ICSA Non-Spiked Ana	alytes ≤ ± PQL	Yes No	MS Analyzed Every 10% of Samples 70-130%						
☐ Yes ☐ No	ICSAB Spiked Analyte		Yes No	Serial Dilution Analyzed						
☑ Yes ☐ No	CCBs ≤ ± PQL	☑ Yes ☐ No CCVs 90-110%	Yes No	Internal Standards 80-120%						
	Danadi	Other data quality issues ider		☐ Yes ☑ No						
	Descrit	be any anomaly or deficiency not	indicated a	bove in the space provided						
		LIMS Electronic		nsfer						
Yes No	The instrument data fi	ile is uploaded to the X: drive	Yes No	Instrument data are uploaded into the LIMS						
☑ Yes ☐ No	All samples and QC d	data are present in LIMS	Yes No	The analyte list for the sequence is complete						
Peer Rev	iewer =		Date:	2 /4/2-14						

٠,

PREPARATION BENCH SHEET

1412020

Matrix: Water

TechLaw, Inc. - ESAT Region 8

Printed: 12/3/2014 10:23:42AM

Date Prepared: 12/03/14 10:22 By: SV

Prepared using: METALS - No Lab Prep Reqd

Lab Number	Analysis	EPA Tag ID	Initial (mL)	Final (mL)	Spike1 ID	ul Spike1	Spike2 ID	ul Spike2	Source ID	QC Code	Extraction Comments
C141006-02 A	DM-Hardness - Calculated	8-B	50	50						AC2EFF	8-B
C141006-04 A	DM-Hardness - Calculated	8-B	50	50					,	FDB	8-B
C141006-06 A	DM-Hardness - Calculated	8-B	50	50				·		RDEFF	8-B
C141006-02 A	ICPOE Diss. Metals	8-B	50	50						AC2EFF	8-B
C141006-04 A	ICPOE Diss. Metals	8-B	50	50						FDB	8-B
C141006-06 A	ICPOE Diss. Metals	8-B	50	50				J		RDEFF	8-B
1412020-BLK1	QC		50	50						Blank	
1412020-BS1	QC	,	10	10	4020315	100				LCS	
1412020-DUP1	QC		50	50	-				C141006-02	Duplicate	
1412020-MS1	QC		10	10	4020315	100			C141006-02	Matrix Spike	

Preparation Reviewed By

Date

Page 1 of 1

ANALYSIS SEQUENCE

1412023

M2/03/14

Printed: 12/3/2014 12:38:48PM ICPOE - PE Optima Sequence Date: 12/03/14 00:00 Instrument: Dilut. Comments Lab Number **Factor Analysis** STD ID | Sample/Std Name **EPA Tag ID** Source Sple 1412023-ICV1 QC 4020402 Initial Cal Check 1412023-SCV1 QC 4020403 Secondary Cal Check 1412023-ICB1 QC Initial Cal Blank 1412023-CRL1 4020502 Instrument RL Check QC 1412023-IFA1 QC 4020404 Interference Check A 1412023-IFB1 QC 4020405 Interference Check B 1412020-BLK1 QC Blank 1412020-BS1 QC LCS C141006-02 DM-Hardness - Calculated AC2EFF 8-B C141006-02 ICPOE Diss. Metals AC2EFF 8-B QC 1412020-DUP1 C141006-02 Duplicate 1412023-SRD1 QC Serial Dilution C141006-02 1412020-MS1 QC Matrix Spike C141006-02 C141006-04 DM-Hardness - Calculated FDB 8-B Α C141006-04 Α ICPOE Diss. Metals FDB 8-B **RDEFF** C141006-06 Α DM-Hardness - Calculated 8-B C141006-06 ICPOE Diss. Metals **RDEFF** Α 8-B 1412023-CCV1 QC 4020402 Calibration Check QC 1412023-CCB1 Calibration Blank

Analytical Sequence

Method : ESAT_2013_1.0

Seq.	Loc.		Sample ID
1	1		Cal Blank
2	9	\mathbf{Z}	High Std
3	3	<u>₹₹</u>	SEQ-ICV
4	10	Ľ≱ QČ	SEQ-SCV
5	1	Ľ* QČ	SEQ-ICB
6	11	QČ	SEQ-CRL
7	12	Ľ* QČ	SEQ-IFA
8	13	QČ	SEQ-IFB
9	26		1412020-BLK1
10	27		1412020-BS1
11	28	Ŗ	C141006-02
12	29		1412020-DUP1
13	30		SEQ-SRD1 @5X
14	31		1412020-MS1
15	32	A	C141006-04
16	33	I	C141006-06
17	34		Blank
18	3	6c Î	SEQ-CCV
19	1	Ó.C.	SEQ-CCB

Suidesty

Sample Information Detail Report Document Name: A-048_1412020_OED_141203

File Description

A-048 Rico-Argentine Oct 2014

Parameters Common to All Samples

Batch ID	1412020 S. Van Overmairan
Analyst Name Volume Units	S.VanOvermeiren ml
Weight Units	g

Parameters That Vary By Sample

Sample No 1 2 3	A/S Location 26 27 28	Sample ID 1412020-BLK1 1412020-BS1 C141006-02	Remarks
4 5	29 30	1412020-DUP1 SEQ-SRD1 @5X	
6	31	1412020-MS1	
7	32	C141006-04	
8	33	C141006-06	
9	34	Blank	
Sample No	Aliquot Volume	Diluted To Vol.	Matrix Check Sample
2			Recovery 3 of 1
3			D !!
4			Duplicate of 3
5	2	10	5X Dilution of 3
6			Recovery 3 of 3
8 9			
J			

Analysis Begun

Start Time: 12/3/2014 11:16:21 AM Plasma On Time: 12/3/2014 7:26:01 AM

Logged In Analyst: esat Technique: ICP Continuous

Spectrometer Model: Optima 4300 DV, S/N 077N3082602Autosampler Model: AS-93plus

Sample Information File: C:\pe\Administrator\Sample Information\2014\A-048 Rico-Arg\A-048_1412020_0ED_141

Batch ID: 1412020

Results Data Set: A-048_1412020_141203

Results Library: C:\pe\Administrator\Results\Results.mdb

Sequence No.: 1 Sample ID: Cal Blank

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 1

Date Collected: 12/3/2014 11:16:21 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: Cal Blank

Analyte

Back Pressure

Flow

All

247.0 kPa

0.80 L/min

Mean	Data:	Cal	Blank
------	-------	-----	-------

Mean Data: Car					
	Mean Corrected				Calib
Analyte	Intensity	${ t Std.Dev.}$	RSD		Jnits
Sc Axial	2283713.1	12707.50	0.56%	100.0 %	
Sc Radial	340351.9	776.29	0.23%	100.0 %	5
Ag 328.068†	-147.0	10.79	7.34%		ıg/L
Al 396.153†	14.6	12.75	87.53%	[0.00] ι	ıg/L
As 193.696†	-10.7	1.12	10.44%	[0.00] ι	ıg/L
Ba 233.527†	-11.4	0.67	5.92%	[0.00] ι	ıg/L
Be 313.107†	-941.4	18.27	1.94%	[0.00] ι	ıg/L
B 249.677†	-119.3	0.99	0.83%	[0.00] เ	ıg/L
Ca 317.933†	13.1	9.70	74.19%	[0.00] เ	ıg/L
Cd 214.440†	-3.8	1.39	36.69%	[0.00] เ	ıg/L
Co 228.616†	-21.6	2.03	9.39%	[0.00] ι	ıg/L
Cr 267.716†	1.8	1.27	72.05%	[0.00] เ	ıg/L
Cu 324.752†	2953.8	37.31	1.26%	[0.00] ı	ıg/L
Fe 238.204†	6.2	0.81	12.96%	[0.00] เ	ıg/L
K 766.490†	-28.5	17.75	62.33%	[0.00] ι	ıg/L
Mg 285.213†	87.9	1.65	1.88%	[0.00] ι	ıg/L
Mn 257.610†	48.0	4.48	9.34%	[0.00] ι	ıg/L
Mo 202.031†	-4.4	1.92	44.17%		ıg/L
Na 589.592†	166.1	1.79	1.08%	[0.00] เ	ıg/L
Ni 231.604†	97.7	2.66	2.72%		ug/L
Pb 220.353†	-8.3	1.55	18.63%		ıg/L
Sb 206.836†	10.0	0.41	4.07%		ug/L
Se 196.026†	1.4	2.90	201.23%	[0.00] เ	ug/L
SiO2 251.603†	212.5	8.48	3.99%		ug/L
Sr 421.552†	4352.7	6.25	0.14%	[0.00] เ	ug/L
Ti 334.940†	9.3	0.70	7.56%		ug/L
Tl 190.801†	-3:2	2.83	87.40%		ug/L
V 290.880†	1732.5	8.30	0.48%	[0.00] ι	ug/L
Zn 206.200†	-7.4	0.54	7.22%	[0.00] ι	ug/L

Sequence No.: 2 Sample ID: High Std Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 9
Date Collected: 12/3/2014 11:19:21 AM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: High Std

Analyte Back Pressure Flow

All 247.0 kPa

0.80 L/min

A11 247.0 KPd 0.00 L/IIIII

Mean Data: High	std				
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD	Conc.	Units
Sc Axial	2246348.9	9181.62	0.41%	98.36	ક
Sc Radial	338412.2	4637.38	1.37%	99.43	ક
Ag 328.068†	27898.4	104.97	0.38%	[500]	ug/L
Al 396.153†	135209.0	3421.42	2.53%	[25000]	ug/L
As 193.696†	471.5	3.80	0.81%	[5000]	ug/L
Ba 233.527†	8158.2	83.21	1.02%	[1000]	ug/L
Be 313.107†	331374.8	428.49	0.13%	[1000]	ug/L
B 249.677†	76599.2	406.53	0.53%	[10000]	ug/L
Ca 317.933†	47534.9	866.13	1.82%	[25000]	ug/L·
Cd 214.440†	2345.7	14.47	0.62%	[1000]	ug/L
Co 228.616†	3220.0	7.04	0.22%	[1000]	ug/L
Cr 267.716†	22899.6	200.80	0.88%	[5000]	ug/L
Cu 324.752†	349709.8	48.39	0.01%	[2000]	ug/L
Fe 238.204†	1393.4	14.50	1.04%	[25000]	ug/L
K 766.490†	106184.0	3078.49	2.90%	[50000]	ug/L
Mg 285.213†	121975.6	3221.94	2.64%	[25000]	ug/L
Mn 257.610†	218958.6	258.26	0.12%	[2000]	ug/L
Mo 202.031†	489.1	4.54	0.93%	[1000]	ug/L
Na 589.592†	185544.8	5203.67	2.80%	[25000]	ug/L
Ni 231.604†	11659.1	49.91	0.43%	[5000]	ug/L
Pb 220.353†	2279.9	3.96	0.17%	[5000]	ug/L
Sb 206.836†	1205.0	8.18	0.68%	[5000]	ug/L
Se 196.026†	401.0	1.23	0.31%	[5000]	ug/L
SiO2 251.603†	71704.6	277.26	0.39%	[20000]	ug/L
Sr 421.552†	3080085.4	4753.96	0.15%	[1000]	ug/L
Ti 334.940†	191875.0	593.38	0.31%	[1000]	
Tl 190.801†	1301.5	3.21	0.25%	[5000]	ug/L
V 290.880†	46493.7	266.10	0.57%	[2000]	ug/L
			0 440	550001	/

3868.3

[5000] ug/L

15.69 0.41%

Calibration Summary

Zn 206.200†

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Ag 328.068	1	Lin Thru 0	0.0	55.80	0.00000	1.000000	·
Al 396.153	1	Lin, Calc Int	0.0	5.408	0.00000	1.00000	
As 193.696	1	Lin Thru 0	0.0	0.0943	0.00000	1.000000	
Ba 233.527	1	Lin Thru 0	0.0	8.158	0.00000	1.000000	
Be 313.107	1	Lin Thru 0	0.0	331.4	0.00000	1.000000	
B 249.677	1	Lin Thru 0	0.0	7.660	0.00000	1.000000	
Ca 317.933	1	Lin Thru 0	0.0	1.901	0.00000	1.000000	
Cd 214.440	1	Lin Thru 0	0.0	2.346	0.00000	1.000000	
Co 228.616	1	Lin Thru 0	0.0	3.220	0.00000	1.000000	
Cr 267.716	1	Lin Thru 0	0.0	4.580	0.00000	1.000000	
Cu 324.752	1	Lin Thru 0	0.0	174.9	0.00000	1.000000	
Fe 238.204	. 1	Lin, Calc Int	0.0	0.0557	0.00000	1.00000	
K 766.490	1	Lin Thru 0	0.0	2.124	0.0000	1.000000	
Mg 285.213	1	Lin, Calc Int	0.0	4.879	0.00000	1.00000	
Mn 257.610	1	Lin Thru 0	0.0	109.5	0.00000	1.000000	
Mo 202.031	1	Lin Thru 0	0.0	0.4891	0.00000	1.00000	
Na 589.592	1	Lin, Calc Int	0.0	7.422	0.00000	1.000000	
Ni 231.604	1	Lin Thru 0	0.0	2.332	0.00000	1.00000	
Pb 220.353	1	Lin Thru 0	0.0	0.4560	0.00000	1.000000	
Sb 206.836	1	Lin Thru 0	0.0	0.2410	0.00000	1.000000	

Method: ESAT_2	2013_1.	0	Pag	ge 3		Date: 12/3/2014 11:21:55 AM
Se 196.026	1	Lin Thru 0	0.0	0.0802	0.00000	1.000000
SiO2 251.603	1	Lin, Calc Int	0.0	3.585	0.00000	1.000000
Sr 421.552	1	Lin, Calc Int	0.0	3080	0.00000	1.000000
Ti 334.940	1	Lin Thru 0	0.0	191.9	0.00000	1.000000
Tl 190.801	- 1	Lin Thru 0	0.0	0.2603	0.00000	1.000000
V 290.880	1	Lin Thru 0	0.0	23.25	0.00000	1.000000
Zn 206.200	1	Lin Thru 0	0.0	0.7737	0.00000	1.000000

Sequence No.: 3 Sample ID: SEQ-ICV Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 3 Date Collected: 12/3/2014 11:22:35 AM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: SEQ-ICV

Analyte

Back Pressure Flow 248.0 kPa 0.80 L/min All 248.0 kPa

W D GEO TOU								
Mean Data: SEQ-ICV	Mean Corrected	İ	Calib			Sample		
Analurto	Intensity	Conc.	Units	Std.Dev.	Cong.		Std.Dev.	RSD
Sc Axial	2275034.2	99.62	8	0.311	002101		504.56.1	0.31%
Sc Radial	341568.2	100.4	ક					0.93%
	14067.8				256.2	ug/L	0.65	0.25%
QC value within				= 102.46%				
Al 396.153†	68931.9			282.1	12740	ug/L	282.1	2.21%
QC value within								
		2587		36.7	2587	ug/L	36.7	1.42%
QC value within					506.6	/-	0.01	0 500
	4155.9			2.91	506.6	ug/L	2.91	0.58%
QC value within Be 313.107t		511.1		1.29	E11 1	110 /T	1.29	0.25%
Be 313.107† QC value within					311.1	ug/L	1.29	0.25%
B 249.677†	39067.4	5100	recovery	- 102.25°	5100	ug/L	5.0	0.10%
QC value within	limits for B 2	249 677 R	ecoverv :	= 102.00%	3100	ug/ H	3.0	0.100
Ca 317.933†		12580		262.0	12580	ua/L	262.0	2.08%
QC value within						5,		
		511.8	ug/L	2.10	511.8	ug/L	2.10	0.41%
QC value within	limits for Cd	214.440	Recovery	= 102.36%				
Co 228.616†	1649.8	512.8	ug/L	4.94		ug/L	4.94	0.96%
QC value within	limits for Co	228.616	Recovery	= 102.56%				
Cr 267.716†		2551		9.8	2551	ug/L	9.8	0.38%
QC value within	limits for Cr	267.716	Recovery	= 102.02%				
Cu 324.752†	175149.4	1004	ug/L	1.7	1004	ug/L	1.7	0.17%
QC value within					10650	. /=	155.0	1 020
Fe 238.204† QC value within		12650		155.3	12650	ug/L	155.3	1.23%
	54557.0	25530	recovery	549.1	25530	ug/L	549.1	2.15%
K 766.490† QC value within					25550	ид/ П	347.1	2.130
Mg 285.213†				291.8	12810	ua/L	291.8	2.28%
QC value within						3 ,		
Mn 257.610†	113570.8	1036	ug/L	4.6	1036	ug/L	4.6	0.45%
QC value within				= 103.63%		_		
	247.2				503.2	ug/L	4.52	0.90%
QC value within	limits for Mo	202.031	Recovery	= 100.65%				
Na 589.592†	96076.1	12830		272.3	12830	ug/L	272.3	2.12%
QC value within								
		2565		5.0	2565	ug/L	5.0	0.20%
QC value within					2560	/T	13.1	0.51%
Pb 220.353† QC value within	1173.2			13.1	∠568	ug/L	13.1	0.518
Sb 206.836†	606.3	2480	recovery	6.6	2480	ug/L	6.6	0.27%
QC value within					2400	ug/ L	0.0	0.276
				47.3	2645	ug/L	47.3	1.79%
QC value greate							27.00	
SiO2 251.603†	36322.8		ug/L	8.0		ug/L	8.0	0.08%
QC value within	limits for SiG	251.603	Recove	ry = 101.15%		_		
Sr 421.552†	1606459.2	520.3	ug/L	0.65	520.3	ug/L	0.65	0.13%
QC value within	limits for Sr	421.552	Recovery	= 104.06%				
Ti 334.940†	97288.1		ug/L	0.60	507.0	ug/L	0.60	0.12%
QC value within			_					
T1 190.801†	670.8		ug/L	14.4	2580	ug/L	14.4	0.56%
QC value within	4				4044	/T	2 -	0 040
V 290.880†	23602.2		ug/L	2.5	1014	ug/L	2.5	0.24%
QC value within	TIMILES TOT V	490.00U K	ecovery	- 101.306				

Method: ESAT_2013_1.0

Page !

Date: 12/3/2014 11:24:59 AM

Zn 206.200† 1998.8 2578 ug/L 7.1
 QC value within limits for Zn 206.200 Recovery = 103.11%
QC Failed. Continue with analysis.

2578 ug/L

7.1 0.28%

Sequence No.: 4 Autosampler Location: 10

Sample ID: SEQ-SCV Analyst:

Initial Sample Wt:

Dilution:

Date Collected: 12/3/2014 11:25:39 AM Data Type: Original Initial Sample Vol: Sample Prep Vol:

1010 ug/L

Nebulizer Parameters: SEQ-SCV

 Analyte
 Back Pressure
 Flow

 All
 247.0 kPa
 0.80 L/min

Mean Data: SEQ-SCV
 Mean Corrected
 Calib

 Analyte
 Intensity
 Conc. Units
 Std.Dev.

 Sc Axial
 2281747.0
 99.91 %
 0.314

 Sc Radial
 341778.6
 100.4 %
 0.79

 Ag 328.068†
 14259.5
 259.2 ug/L
 2.17
 Sample Conc. Units Std.Dev. 0.31% 0.79% 259.2 ug/L 2.17 0.84% QC value within limits for Ag 328.068 Recovery = 103.66% Al 396.153† 5220.3 943.7 ug/L 22.73 943.7 ug/L22.73 2.41% QC value within limits for Al 396.153 Recovery = 94.37% 189.7 2032 ug/L 30.6 2032 ug/L 30.6 1.51% As 193.696† QC value within limits for As 193.696 Recovery = 101.60% Ba 233.527† 8393.0 1027 ug/L 13.1 13.1 1.28% 1027 ug/L QC value within limits for Ba 233.527 Recovery = 102.69% Be 313.107† 337196.7 1017 ug/L 1017 ug/L 1.8 0.18% 1.8 OC value within limits for Be 313.107 Recovery = 101.74% B 249.677† 7964.0 1040 ug/L 8.3 0.80% 1040 ug/L 8.3 QC value within limits for B 249.677 Recovery = 103.97% Ca 317.933† 1891.5 940.8 ug/L 6.28 940.8 ug/L 0.67% 6.28 QC value within limits for Ca 317.933 Recovery = 94.08% Cd 214.440† 2403.8 1025 ug/L 7.5 1025 ug/L 7.5 0.74% QC value within limits for Cd 214.440 Recovery = 102.46% Co 228.616† 3332.0 1036 ug/L 7.5 1036 ug/L 7.5 0.73% OC value within limits for Co 228.616 Recovery = 103.56% Cr 267.716† 4618.3 1009 ug/L 11.8 1009 ug/L 11.8 QC value within limits for Cr 267.716 Recovery = 100.95% Cu 324.752† 176677.6 1012 ug/L 5.2 1012 ug/L 5.2 0.51% QC value within limits for Cu 324.752 Recovery = 101.22% 33.92 3.48% 975.8 ug/L Fe 238.204† 55.2 975.8 ug/L 33.92 QC value within limits for Fe 238.204 Recovery = 97.58% K 766.490† 10801.3 4842 ug/L 94.0 4842 ug/L 94.0 1.94% OC value within limits for K 766.490 Recovery = 96.84% 985.6 ug/L Mg 285.213† 4854.8 985.6 ug/L 10.53 10.53 1.07% QC value within limits for Mg 285.213 Recovery = 98.56% Mn 257.610† 115111.9 1051 ug/L 8.4 0.80% 1051 ug/L 8.4 QC value within limits for Mn 257.610 Recovery = 105.06% Mo 202.031† 492.6 1007 ug/L 5.7 1007 ug/L 5.7 0.57% QC value within limits for Mo 202.031 Recovery = 100.70% Na 589.592† 7782.3 965.1 ug/L 18.35 965.1 ug/L 18.35 1.90% QC value within limits for Na 589.592 Recovery = 96.51% Ni 231.604† 2435.0 1046 ug/L 6.6 1046 ug/L 6.6 0.63% QC value within limits for Ni 231.604 Recovery = 104.61% Pb 220.353† 938.3 2051 ug/L 5.9 2051 ug/L 5.9 0.29% OC value within limits for Pb 220.353 Recovery = 102.53% Sb 206.836† 476.8 1972 ug/L 16.8 16.8 0.85% 1972 ug/L QC value within limits for Sb 206.836 Recovery = 98.60% Se 196.026† 82.2 1027 ug/L 13.0 1027 ug/L 13.0 1.27% QC value within limits for Se 196.026 Recovery = 102.66% SiO2 251.603† 18045.7 4977 ug/L 18.1 4977 ug/L 18.1 0.36% QC value within limits for SiO2 251.603 Recovery = 99.54% Sr 421.552† 3212637.8 1042 ug/L 2.9 1042 ug/L 2.9 0.28% QC value within limits for Sr 421.552 Recovery = 104.25% Ti 334.940† 195863.8 1021 ug/L 0.6 1021 ug/L 0.6 0.06% OC value within limits for Ti 334.940 Recovery = 102.08% Tl 190.801† 1309.5 5037 ug/L 33.2 5037 ug/L 33.2 0.66% QC value within limits for Tl 190.801 Recovery = 100.73% V 290.880† 23443.8 1010 ug/L 8.0 8.0 0.79%

QC value within limits for V 290.880 Recovery = 101.00%

Method: ESAT_2013_1.0

Page 7

Date: 12/3/2014 11:28:12 AM

Zn 206.200† 790.3 1014 ug/L 12.5 QC value within limits for Zn 206.200 Recovery = 101.37% All analyte(s) passed QC.

1014 ug/L

12.5 1.23%

Sequence No.: 5
Sample ID: SEQ-ICB
Analyst:
Initial Sample Wt:

Dilution:

Autosampler Location: 1
Date Collected: 12/3/2014 11:28:52 AM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-ICB

 Analyte
 Back
 Pressure
 Flow

 All
 249.0
 kPa
 0.80
 L/min

Mean Data: SEQ-ICB Analyte Sc Axial Sc Radial Ag 328.068†	Mean Corrected	Calib	a	~	Sample	er 5 -	
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
SC Axial	2321449.7	101.7 %	0.62				0.61%
Sc Radial	343665.5	101.0 %	0.35	0 2120	/ -	0 02060	0.348
Ag 328.068†	17.2	0.3139 ug/L	0.23068	0.3139	ug/L	0.23068	/3.50%
QC value within			y = Not calculat	tea	/T	3.48555	050 010
Al 396.153†	-0.8	-0.3661 ug/L	3.48555	-0.3661	ug/L	3.48555	952.01₹
		396.153 Recover	y = Not calculated 29.176	11 10	/T	20 176	255 060
					ug/L	29.176	255.964
QC value within	11mits for As	193.696 Recovery 0.0759 ug/L	y = NOC Calculat	.eu 0 0750	1107 /T	0.02688	35 /39
		0.0759 ug/L 233.527 Recover			ug/L	0.02000	33.437
			y = NOC Carcurat 0.04913	.eu 0 5640	11 0 /T	0 04013	0 709
Be 313.107†	18/.4	0.5649 ug/L	0.04913	0.5049	ug/L	0.04913	0.70%
QC value within	limits for Be	313.107 Recover 15.01 ug/L	y = Not carcurat	15 01	/T	0 006	6 579
					ug/L	0.900	0.5/1
		49.677 Recovery	2.34525	ta O 2200	/T	2.34525	>000 09
		0.2290 ug/L	2.34525	0.4490	ug/L	2.34525	7999.91
	limits for Ca	317.933 Recover	y = NOL Calcula	.eu 	/T	0.92842	165 100
Cd 214.440†	1.3	0.5610 ug/L 214.440 Recover	U.92842		ug/L	0.92042	103.40
					11¢ /T	0.17800	117 /09
		0.1515 ug/L 228.616 Recover			ug/L	0.17800	111.49
			y = NOC Calcula	.ea 	110° /T	0.17883	161 /3
		0.1108 ug/L			ug/L	0.17003	101.45
QC value within	limits for Cr	267.716 Recover	y = NOL Calcula	rea n noss	1107 /T	0 12000	12 20
Lu 324.752†	-172.5	-0.9833 ug/L	0.12980	-0.9833	ug/L	0.12960	13.20
QC value within			y = Not calcula	tea F 003	/T	44.7133	770 55
'e 238.204†	0.3				ug/L	44./133	110.55
		238.204 Recover	y = Not calcula	cea	/T	14 774	C1 0E
	51.1				ug/L	14.774	01.25
QC value within	limits for K /	66.490 Recovery	= Not carculate	ea	/T	0 27426	E0 E20
1g 285.213†	-2.1	-0.4686 ug/L	U.2/420	-0.4000	ug/ь	0.2/420	30.33
		285.213 Recover		rea 0 1103	/T	0.03332	20 16
In 257.610†	13.3	0.1183 ug/L 257.610 Recover			ug/L	0.03332	20.10
QC value within	limits for Mn	257.610 Recover	y = NOL Calcula	rea .v Eso	/T	6 0066	124 12
10 202.031†	2.2:	4.538 ug/L	0.0800	4.538	ug/L	0.0000	134.13
**************************************		202.031 Recover	y = Not calcula	tea 0 7000	/T	0.56437	77 40
Ta 589.592†	/.l	0.7292 ug/L	0.56437	0.7494	ug/L	0.56437	//.40
		589.592 Recover		tea a 134	/T	0 1150	00 13
	-5.0		2.1150	-2.134	ug/L	2.1150	99.13
		231.604 Recover		tea 2 FAO	/T	11.9682	477 201
		2.508 ug/L			ug/L	11.9082	4//.20
		220.353 Recover		tea 1 100	/T	0 2170	040 56
Sb 206.836†	-0.3	-1.108 ug/L	9.3172	-1.108	ug/L	9.3172	840.56
		206.836 Recover			/T	20 172	00 (1
		34.74 ug/L			ug/L	32.173	92.01
		196.026 Recover			/ T	1 01050	017 01
		-0.8809 ug/L	1.91859		ug/L	1.91859	217.81
· · · · · · · · · · · · · · · · · · ·		2 251.603 Recov			/T	0 0130	10 03
Sr 421.552†		0.119 ug/L			ug/L	0.0130	10.93
		421.552 Recover			. /=	0 0005	0 410
ri 334.940†	65.1	0.339 ug/L			ug/L	0.0285	8.41
~		334.940 Recover			/-	44 046	0.65 1.5
rl 190.801†	1.1				ug/L	11.3421	267.169
		190.801 Recover	y = Not calcula				
7 290.880†		-4.601 ug/L		-4.601	ug/L	0.8510	18.509
OC value within	limits for V 2	90.880 Recovery	= Not calculate	ed			

Date: 12/3/2014 11:31:14 AM

Zn 206.200† 0.8 1.013 ug/L 0.7908 1.013 ug/L 0.7908 78.07% QC value within limits for Zn 206.200 Recovery = Not calculated All analyte(s) passed QC.

Sequence No.: 6 Sample ID: SEQ-CRL Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 11 Date Collected: 12/3/2014 11:31:53 AM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: SEQ-CRL

Back Pressure Flow 249.0 kPa 0.80 L/min Analyte All

Mean Data: SEQ-CRL	Mean Corrected					Sample		
Analyte Sc Axial Sc Radial	Intensity 2237718.5	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Sc Axial	2237718.5	97.99	용	0.790				0.81%
Sc Radial Ag 328.068†	338937.7	99.58	8	0.838				0.84%
Ag 328.068†	575.8	10.42	ug/L	0.071	10.42	ug/L	0.071	0.68%
~	limits for Ag 328.							
Al 396.153†		97.81		1.108	97.81	ug/L	1.108	1.13%
	limits for Al 396.		Recovery	= 97.81%		/ - -	10 450	44 000
	4.1			18.479	45.00	ug/L	18.479	41.07%
~	limits for As 193. 86.7	10.58		0.318	10 50	1107 /T	0 319	3.01%
	limits for Ba 233.		ug/L Pecovery	- 105 82%	10.56	ug/L	0.318	3.013
		5.008		0.0252	5 008	ua/L	0.0252	0.50%
	limits for Be 313.				3.000	ug/ n	0.0232	0.300
	2051.6				267.8	ug/L	0.94	0.35%
	limits for B 249.6					3,		
Ca 317.933†		245.3		2.35	245.3	ug/L	2.35	0.96%
QC value within	limits for Ca 317	.933 1	Recovery	= 98.13%				
Cd 214.440†	25.1	10.71	ug/L	0.342	10.71	ug/L	0.342	3.19%
QC value within	limits for Cd 214	.440	Recovery	= 107.09%				
	34.0	10.58	ug/L	0.515	10.58	ug/L	0.515	4.87%
QC value within	limits for Co 228	.616	Recovery	= 105.80%				
	44.2			0.5706	9.698	ug/L	0.5706	5.88%
QC value within	limits for Cr 267	.716	Recovery	= 96.98%	10 10	/T	0 150	1.46%
Cu 324.752†	1810.4	10.40	ug/L	0.154	10.40	ug/L	0.152	1.406
	limits for Cu 324 5.9	105.1		38.97	105 1	1107 /T	38.97	37 088 -
	limits for Fe 238	204			103.1	ug/1	30.57	37.008
K 766.490†	2267.5	1064	na/L	31 1	1064	na/L	31.1	2.92%
OC value within	limits for K 766.	490 R	ecoverv =	106.41%	2001	~g, _		
	4947.0			10.1	1014	ug/L	10.1	1.00%
OC value within	limits for Mg 285	.213				_		
	1208.5		ug/L	0.089	11.00	ug/L	0.089	0.81%
QC value within	limits for Mn 257	.610	Recovery	= 109.97%				
	5.9				12.12	ug/L	3.686	30.43%
	limits for Mo 202							
Na 589.592†		1052		18.9	1052	ug/L	18.9	1.79%
QC value within	limits for Na 589	.592	Recovery	= 105.21%		/-	0 105	01 000
Ni 231.604†	26.6	11.41	ug/L	2.497	11.41	ug/L	2.497	21.88%
	limits for Ni 231 17.7	.004 .	Recovery	= 114.128	20 72	110 /T	5.296	13.67%
	17.7 limits for Pb 220				30.73	ug/L	3.290	13.07%
		46.21		7.629	16 21	110 /T.	7.629	16.51%
	limits for Sb 206				40.21	ug/ L	7.025	10.510
	7.0				87.76	ug/L	6.254	7.13%
OC value within	limits for Se 196	.026	Recovery	= 87.76%	0,0	ug, =	0.201	
SiO2 251.603†	832.8	231.5	ua/L	1.59	231.5	ug/L	1.59	0.69%
	limits for SiO2 2					- J.		
Sr 421.552†	34065.8	11.04	ug/L	0.030	11.04	ug/L	0.030	0.28%
QC value within	limits for Sr 421	.552	Recovery	= 110.42%				
Ti 334.940†	9972.1	51.97	ug/L	0.065	51.97	ug/L	0.065	0.12%
	limits for Ti 334							
Tl 190.801†	14.5	56.62	_	4.713	56.62	ug/L	4.713	8.32%
· -	limits for Tl 190					/-	4 051	0 000
V 290.880†	1244.9	53.47		1.071	53.47	ug/L	1.071	2.00%
QC value within	limits for V 290.	880 R	ecovery =	106.95%				

Method: ESAT_2013_1.0

Date: 12/3/2014 11:34:16 AM

2.156

55.14 ug/L

2.156 3.91%

Sequence No.: 7
Sample ID: SEQ-IFA
Analyst:
Initial Sample Wt:
Dilution:

Autosampler Location: 12
Date Collected: 12/3/2014 11:34:56 AM
Data Type: Original
Initial Sample Vol:
Sample Prep Vol:

Nebulizer Parameters: SEQ-IFA

 Analyte
 Back
 Pressure
 Flow

 All
 249.0
 kPa
 0.80
 L/min

	Mean Corrected		Calin			Sample		
	Intensity	Cong	Imite	Std Dev	Conc		Std.Dev.	RSD
Analyte Sc Axial Sc Radial	2109294.9	92.36	8	0.217	conc.	OHICS	bca.bev.	0.23%
Sc Radial	318797.4	93.67	8	1.050				1.12%
Ag 328.068†	-595.2	4.704	ua/L	0.5777	4.704	ug/L	0.5777	12.28%
	limits for Ag 32				ted	_		
Al 396.153†	330112.1			751.2	60960	ug/L	751.2	1.23%
	limits for Al 39	6.153	Recovery =	101.60%				
	-24.4			47.499	16.09	ug/L	47.499	295.18%
QC value within	limits for As 19	3.696	Recovery =	Not calcula	ted			
Ba 233.527†	29.5	-0.8114	ug/L	0.31033		ug/L	0.31033	38.25%
QC value within	limits for Ba 23				ted			
Be 313.107†	50.7			0.08128		ug/L	0.08128	13.40%
QC value within	limits for Be 31	3.107	Recovery =		ted			
	-990.6			1.13	-129.3	ug/L	1.13	0.87%
	limits for B 249	.677 R	ecovery = :	Not calculat	ed			4 4 4 6
Ca 317.933†		307000	ug/L _		307000	ug/L	4419.2	1.44%
QC value within	limits for Ca 31	7.933	Recovery =	102.34%	E E 40	/=	1 1001	00 270
Cd 214.440†	8.7	-5.542	ug/L	1.1291	-5.542	ug/L	1.1291	20.37%
QC value less th	nan the lower lim	it for	Cd 214.440	Recovery =	Not caici	ııated	1 4040	31.25%
Co 228.616†	32.7	4.493	ug/L	1.4040	4.493	ug/ь	1.4040	31.436
	limits for Co 22	-1.129		0.4635	1 120	ug/L	0 4635	41.06%
Cr 267.716†	-23.6 limits for Cr 26					ug/L	0.4055	41.000
		_1 140	recovery -	NOC CAICUIA	_1 1/10	ug/L	0.3639	31.91%
	limits for Cu 32	752	Pecovery -	Not calcula		ug/ ii	0.3033	31.310
Fe 238.204†	13218.9	237100	recovery =	2979.8	237100	ua/L	2979.8	1.26%
OC value within	limits for Fe 23	237100	Recovery =	94 85%	237100	ug/1	23,3.0	
K 766.490†	33.8	-87 83	ug/L		-87.83	ug/L	5.692	6.48%
OC value within	limits for K 766	1.490 R	ecoverv =		ed	3, -		
Mg 285.213†	711712.5	145900	ua/L	1631.6	145900	ug/L	1631.6	1.12%
	limits for Mg 28					3.		
Mn 257.610†	244.5	-0.3270	ug/L	0.11880	-0.3270	ug/L	0.11880	36.33%
OC value within	limits for Mn 25	7.610	Recovery =	Not calcula	ted			
	14.9				9.486	ug/L	1.6925	17.84%
QC value within	limits for Mo 20	2.031	Recovery =	Not calcula	ted			
Na 589.592†	384444.1				51670	ug/L	359.4	0.70%
QC value within	limits for Na 58		Recovery =	103.35%				
Ni 231.604†	100.3		ug/L	2.4513	4.035	ug/L	2.4513	60.76%
QC value within					ted			
Pb 220.353†	-25.7	15.12	ug/L	7.596	15.12	ug/L	7.596	50.23%
	limits for Pb 22				ted			
Sb 206.836†	9.1	-9.310		16.6909	9.310	ug/L	16.6909	179.27%
	limits for Sb 20							
	-5.2					ug/L	54.672	192.16%
	limits for Se 19						0 605	10 000
	-199.8			2.605		ug/L	2.605	10.06%
	limits for SiO2						0 0050	14 200
Sr 421.552†	45473.0			0.2950	-2.050	ug/L	0.2950	14.39%
	limits for Sr 42		Recovery = ug/L			11 cr /T	0 0411	5.64%
Ti 334.940†						ug/L	0.0411	5.046
	limits for Ti 33					110 / T	7 0740	76.93%
T1 190.801†			ug/L		-9.196	ug/ь	7.0740	10.938
		7 L A L L L	RECOVERV =	тиот, сатешта				
QC value within	700 6	_0.001	110/1	1 9774		ua /T	1 0774	135 539
V 290.880†	702.6 limits for V 290	-0.431	ug/L	1.8774	-0.431	ug/L	1.8774	435.53%

Method: ESAT_2013_1.0

Page 13

Date: 12/3/2014 11:36:57 AM

Zn 206.200† -1.3 -2.404 ug/L 1.1250 -2.404 ug/L 1.1250 46.80% QC value within limits for Zn 206.200 Recovery = Not calculated QC Failed. Continue with analysis.

Sequence No.: 8 Sample ID: SEQ-IFB Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 13 Date Collected: 12/3/2014 11:38:37 AM Data Type: Original Initial Sample Vol: Sample Prep Vol:

______ Nebulizer Parameters: SEQ-IFB

Back Pressure Flow
248.0 kPa 0.80 L/min Analyte 248.0 kPa All

Mean Data: SEQ-IFB	Woom Comments		Calib			Commo		
	Mean Corrected Intensity	Cong	Calib	Ctd Dorr	Cong	Sample	Std.Dev.	RSD
Analyte	2110117 6	92 40	onics %	0 249	cone.	Units	sta.Dev.	0.27%
Sc Axial Sc Radial	321726 6	94 53	96	0.249 1.093				1.16%
Ag 328.068†	17114.9	324.2	ua/L	0.11	324.2	ug/L	0.11	0.03%
OC value within	limits for Ag 328	.068	Recovery =	108.07%		5,		
Al 396.153†		60370		929.2	60370	ug/L	929.2	1.54%
	limits for Al 396			100.61%		3.		
		1058		25.1	1058	ug/L	25.1	2.37%
	limits for As 193	.696	Recovery =	105.85%		_		
Ba 233.527†	2467.2	296.6	ug/L	1.61	296.6	ug/L	1.61	0.54%
QC value within	limits for Ba 233	.527	Recovery =	98.87%				
Be 313.107†		95.50		0.570	95.50	ug/L	0.570	0.60%
QC value within	limits for Be 313	.107	Recovery =	: 95.50%				
			ug/L		398.6	ug/L	3.73	0.94%
QC value less th	han the lower limit		в 249.677	Recovery	= 79.73%			
Ca 317.933†				5081.2	303100	ug/L	5081.2	1.68%
QC value within	limits for Ca 317							
					293.2	ug/L	1.73	0.59%
QC value within	limits for Cd 214	.440	Recovery =	· 97 . 73%				
	980.4				299.2	ug/L	0.07	0.02%
QC value within	limits for Co 228							
Cr 267.716†	1321.8			2.45	293.5	ug/L	2.45	0.83%
	limits for Cr 267	.716	Recovery =	97.84%				
Cu 324.752†				2.50	311.3	ug/L	2.50	0.80%
QC value within	limits for Cu 324							
Fe 238.204†		235500	ug/L	2651.7	235500	ug/L	2651.7	1.13%
QC value within	limits for Fe 238	.204	Recovery =					
K 766.490†	44993.8	20940	ug/L	107.0	20940	ug/L	107.0	0.51%
	limits for K 766.				1 4 4 1 0 0	/-	01.40	1 400
Mg 285.213†	703098.3	144100	ug/L	2148.8	144100	ug/L	2148.8	1.49%
· -	limits for Mg 285				100 6	/T	0 43	0 000
Mn 257.610†		197.6		0.43	197.6	ug/L	0.43	0.22%
	limits for Mn 257	.610	Recovery =	98./8%	201 0		2.99	0.99%
· · · · · · · · · · · · · · · · · · ·			ug/L		301.9	ug/L	4.99	0.996
	limits for Mo 202				E0000	11 ~ /T	841.7	1.65%
Na 589.592†				841.7	30000	ug/L	041./	1.00%
	limits for Na 589				200.2	11~ /T	1.40	0.47%
Ni 231.604†	785.0 limits for Ni 231			1.40	299.2	ug/L	1.40	0.475
Pb 220.353†					1003	110° /T	8.9	0.89%
PD 220.3531	limits for Pb 220	353	Pogovory -	- 100 209	1003	ug/ш	0.9	0.05%
			kecovery - ug/L	22.50	077.6	110 / T	22.50	2.30%
Sb 206.836†	limits for Sb 206				311.0	ug/L	22.30	2.30%
	34.2			27.62	468.2	ua /T	27.62	5.90%
	limits for Se 196				400.2	ug/I	27.02	3.508
		482.6		1.68	192 6	ug/L	1.68	0.35%
	limits for SiO2 2				402.0	ug/I	1.00	. 0.33%
Sr 421.552†	3138744.4		Recovery ug/L	5.1	1002	ug/L	5.1	0.51%
	limits for Sr 421		_		1002	ug/ L	5.1	0.516
Ti 334.940†	196828.8		recovery -	3.8	1026	ug/L	3.8	0.37%
	limits for Ti 334				1020	ug/п	5.0	0.57%
Tl 190.801†			kecovery - 5 ug/L	20.26	943.5	ua/T	20.26	2.15%
	limits for Tl 190		-		743.3	ug/L	20.20	2.150
V 290.880†			recovery -	2.18	306.3	ua/T	2.18	0.71%
	limits for V 290.				500.5	ug/L	2.10	0.110
QC varue within	TIMILES LOT V 290.	000 K	recover A =	104.036				

Method: ESAT_2013_1.0

Page 15

Date: 12/3/2014 11:40:47 AM

Zn 206.200† 222.8 282.4 ug/L 6.85
 QC value within limits for Zn 206.200 Recovery = 94.13%
QC Failed. Continue with analysis.

282.4 ug/L

6.85 2.43%

Sequence No.: 9

Sample ID: 1412020-BLK1 Analyst: S. Van Overmeiren

Initial Sample Wt:

Dilution:

Autosampler Location: 26 Date Collected: 12/3/2014 11:42:28 AM Data Type: Original Initial Sample Vol: Sample Prep Vol:

Nebulizer Parameters: 1412020-BLK1

Analyte Back Pressure Flow

248.0 kPa 0.80 L/min

| Mean Data: 1412020-BLK1 | Mean Corrected | Calib | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | Conc. Units | Std.Dev. | RSD | Conc. Units | Conc. Units | Conc. Units | Mean Data: 1412020-BLK1 Sample Mean Corrected Calib